Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252035

RESUMEN

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Asunto(s)
Células Epiteliales Alveolares , Reprogramación Celular , Lesión Pulmonar , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Fibrosis Pulmonar , Células Epiteliales Alveolares/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inositol/metabolismo , Lesión Pulmonar/patología , Proteínas Serina-Treonina Quinasas/genética , Proteostasis , Fibrosis Pulmonar/genética , Proteínas de la Membrana/genética , Proteína C Asociada a Surfactante Pulmonar/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084407

RESUMEN

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Asunto(s)
Bronquiolitis Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratoria/metabolismo , Bronquiolitis Obliterante/inducido químicamente , Bronquiolitis Obliterante/metabolismo , Células Epiteliales/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L434-L446, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642674

RESUMEN

Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day × 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and nuclear factor-kappa B (NF-κB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1ß, and NF-κB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1ß, and NF-κB within the lung.


Asunto(s)
Bronquiolitis Obliterante , Interleucina-17 , Ratas , Animales , Diacetil , Remodelación de las Vías Aéreas (Respiratorias) , FN-kappa B , Factor de Necrosis Tumoral alfa , Ratas Sprague-Dawley , Bronquiolitis Obliterante/inducido químicamente , Pulmón , Inmunoglobulina G
4.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L571-L583, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881561

RESUMEN

E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics. Sprague-Dawley rats were exposed to e-cigarette aerosol for 3 h/day for three consecutive days. Groups included: PG/VG alone, PG/VG + 2.5% nicotine (N), or PG/VG + N + 3.3% vanillin (V). Right lung lobes were lavaged for BAL and supernatants prepared for proteomics. Extracellular BAL S100A9 concentrations and BAL cell staining for citrullinated histone H3 (citH3) were also performed. From global proteomics, ∼2,100 proteins were identified from rat BAL. The greatest change in number of BAL proteins occurred with PG/VG exposures alone compared with controls with biological pathways enriched for acute phase responses, extracellular trap formation, and coagulation. Extracellular BAL S100A9 concentrations and the number of citH3 + BAL cells also increased significantly in PG/VG and PG/VG + 2.5% N. In contrast to PG/VG or PG/VG + N, the addition of vanillin to PG/VG + N increased BAL neutrophilia and downregulated lipid transport proteins. In summary, global proteomics support e-cigarette aerosol exposures to PG/VG alone as having a significant biologic effect on the lung independent of nicotine or flavoring with increased markers of extracellular trap formation.


Asunto(s)
Productos Biológicos , Sistemas Electrónicos de Liberación de Nicotina , Ratas , Animales , Nicotina , Proteoma , Higroscópicos , Ratas Sprague-Dawley , Propilenglicol/farmacología , Glicerol/farmacología , Aerosoles , Histonas , Aromatizantes , Lavado Broncoalveolar
5.
Am J Respir Crit Care Med ; 205(2): 208-218, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34752721

RESUMEN

Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Proteómica
6.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L578-L592, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36068185

RESUMEN

Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology. In the current work, we combined these two common environmental exposures, DA and IAV, to test whether shorter DA exposures followed by sublethal IAV infection would result in similar airways disease. Adult mice exposed to DA vapors 1 h/day for 5 consecutive days followed by infection with the airway-tropic IAV H3N2 (HKx31) resulted in increased mortality, increased bronchoalveolar lavage (BAL) neutrophil percentage, mixed obstruction and restriction by lung function, and subsequent airway remodeling. Exposure to DA or IAV alone failed to result in significant pathology, whereas mice exposed to DA + IAV showed increased α-smooth muscle actin (αSMA) and epithelial cells coexpressing the basal cell marker keratin 5 (KRT5) with the club cell marker SCGB1A1. To test whether DA exposure impairs epithelial repair after IAV infection, mice were infected first with IAV and then exposed to DA during airway epithelial repair. Mice exposed to IAV + DA developed similar airway remodeling with increased subepithelial αSMA and epithelial cells coexpressing KRT5 and SCGB1A1. Our findings reveal an underappreciated concept that common environmental insults while seemingly harmless by themselves can have catastrophic implications on lung function and long-term respiratory health when combined.


Asunto(s)
Bronquiolitis Obliterante , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Ratones , Animales , Humanos , Diacetil/toxicidad , Remodelación de las Vías Aéreas (Respiratorias) , Subtipo H3N2 del Virus de la Influenza A , Bronquiolitis Obliterante/patología , Mucosa Respiratoria/patología , Células Epiteliales/patología , Pulmón/patología , Gripe Humana/patología
7.
Arch Toxicol ; 95(7): 2469-2483, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031698

RESUMEN

Bronchiolitis obliterans (BO) is a devastating lung disease seen commonly after lung transplant, following severe respiratory tract infection or chemical inhalation exposure. Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha-diketone known to cause BO when inhaled, however, the mechanisms of how inhalation exposure leads to BO development remains poorly understood. In the current work, we combined two clinically relevant models for studying the pathogenesis of DA-induced BO: (1) an in vivo rat model of repetitive DA vapor exposures with recovery and (2) an in vitro model of primary human airway epithelial cells exposed to pure DA vapors. Rats exposed to 5 consecutive days 200 parts-per-million DA 6 h per day had worsening survival, persistent hypoxemia, poor weight gain, and histologic evidence of BO 14 days after DA exposure cessation. At the end of exposure, increased expression of the ubiquitin stress protein ubiquitin-C accumulated within DA-exposed rat lung homogenates and localized primarily to the airway epithelium, the primary site of BO development. Lung proteasome activity increased concurrently with ubiquitin-C expression after DA exposure, supportive of significant proteasome stress. In primary human airway cultures, global proteomics identified 519 significantly modified proteins in DA-exposed samples relative to controls with common pathways of the ubiquitin proteasome system, endosomal reticulum transport, and response to unfolded protein pathways being upregulated and cell-cell adhesion and oxidation-reduction pathways being downregulated. Collectively, these two models suggest that diacetyl inhalation exposure causes abundant protein damage and subsequent ubiquitin proteasome stress prior to the development of chemical-induced BO pathology.


Asunto(s)
Bronquiolitis Obliterante , Diacetil , Animales , Bronquiolitis Obliterante/inducido químicamente , Bronquiolitis Obliterante/metabolismo , Bronquiolitis Obliterante/patología , Diacetil/metabolismo , Diacetil/toxicidad , Aromatizantes/toxicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Mucosa Respiratoria/metabolismo , Ubiquitina/metabolismo
8.
J Allergy Clin Immunol ; 146(3): 545-554, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32018030

RESUMEN

BACKGROUND: Rhinovirus frequently causes asthma exacerbations among children and young adults who are allergic. The interaction between allergen and rhinovirus-induced symptoms and inflammation over time is unclear. OBJECTIVE: Our aim was to compare the response to an experimental inoculation with rhinovirus-16 in allergic asthmatics with the response in healthy controls and to evaluate the effects of administrating omalizumab before and during the infection. METHODS: Two clinical trials were run in parallel. In one of these trials, the response to an experimental inoculation with rhinovirus-16 among asthmatics with high levels of total IgE was compared to the response in healthy controls. The other trial compared the effects of administering omalizumab versus placebo to asthmatics in a randomized, double-blind placebo-controlled investigation. The primary outcome for both trials compared lower respiratory tract symptoms (LRTSs) between study groups over the first 4 days of infection. RESULTS: Frequent comparisons of symptoms, lung function, and blood eosinophil counts revealed differences that were more pronounced among allergic asthmatics than among controls by days 2 and 3 after virus inoculation. Additionally, an augmentation of upper respiratory tract symptom scores and LRTS scores occurred among the atopic asthmatics versus the controls during the resolution of symptoms (P < .01 for upper respiratory symptom tract scores and P < .001 for LRTS scores). The beneficial effects of administering omalizumab on reducing LRTSs and improving lung function were strongest over the first 4 days. CONCLUSIONS: LRTSs and blood eosinophil counts were augmented and lung function was reduced among allergic asthmatics early after rhinovirus inoculation but increased late in the infection during symptom resolution. The effect of administering omalizumab on the response to rhinovirus was most pronounced during the early/innate phase of the infection.


Asunto(s)
Antialérgicos/uso terapéutico , Asma/inmunología , Inmunoglobulina E/metabolismo , Omalizumab/uso terapéutico , Infecciones por Picornaviridae/inmunología , Sistema Respiratorio/patología , Rhinovirus/fisiología , Adulto , Asma/tratamiento farmacológico , Método Doble Ciego , Femenino , Humanos , Inmunoglobulina E/inmunología , Masculino , Infecciones por Picornaviridae/tratamiento farmacológico , Efecto Placebo , Pruebas de Función Respiratoria , Sistema Respiratorio/virología , Adulto Joven
9.
Am J Respir Cell Mol Biol ; 58(1): 107-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28846437

RESUMEN

Chlorine is a highly reactive gas that can cause significant injury when inhaled. Unfortunately, its use as a chemical weapon has increased in recent years. Massive chlorine inhalation can cause death within 4 hours of exposure. Survivors usually require hospitalization after massive exposure. No countermeasures are available for massive chlorine exposure and supportive-care measures lack controlled trials. In this work, adult rats were exposed to chlorine gas (LD58-67) in a whole-body exposure chamber, and given oxygen (0.8 FiO2) or air (0.21 FiO2) for 6 hours after baseline measurements were obtained. Oxygen saturation, vital signs, respiratory distress and neuromuscular scores, arterial blood gases, and hemodynamic measurements were obtained hourly. Massive chlorine inhalation caused severe acute respiratory failure, hypoxemia, decreased cardiac output, neuromuscular abnormalities (ataxia and hypotonia), and seizures resulting in early death. Oxygen improved survival to 6 hours (87% versus 42%) and prevented observed seizure-related deaths. However, oxygen administration worsened the severity of acute respiratory failure in chlorine-exposed rats compared with controls, with increased respiratory acidosis (pH 6.91 ± 0.04 versus 7.06 ± 0.01 at 2 h) and increased hypercapnia (180.0 ± 19.8 versus 103.2 ± 3.9 mm Hg at 2 h). In addition, oxygen did not improve neuromuscular abnormalities, cardiac output, or respiratory distress associated with chlorine exposure. Massive chlorine inhalation causes severe acute respiratory failure and multiorgan damage. Oxygen administration can improve short-term survival but appears to worsen respiratory failure, with no improvement in cardiac output or neuromuscular dysfunction. Oxygen should be used with caution after massive chlorine inhalation, and the need for early assisted ventilation should be assessed in victims.


Asunto(s)
Gasto Cardíaco/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Cloro/toxicidad , Oxígeno/farmacología , Insuficiencia Respiratoria , Enfermedad Aguda , Animales , Hipercapnia/inducido químicamente , Hipercapnia/tratamiento farmacológico , Hipercapnia/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/fisiopatología
10.
Am J Respir Cell Mol Biol ; 58(6): 696-705, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29314868

RESUMEN

Inhalation of powerful chemical agents, such as sulfur mustard (SM), can have debilitating pulmonary consequences, such as bronchiolitis obliterans (BO) and parenchymal fibrosis (PF). The underlying pathogenesis of disorders after SM inhalation is not clearly understood, resulting in a paucity of effective therapies. In this study, we evaluated the role of profibrotic pathways involving transforming growth factor-ß (TGF-ß) and platelet-derived growth factor (PDGF) in the development of BO and PF after SM inhalation injury using a rat model. Adult Sprague-Dawley rats were intubated and exposed to SM (1.0 mg/kg), then monitored daily for respiratory distress, oxygen saturation changes, and weight loss. Rats were killed at 7, 14, 21, or 28 days, and markers of injury were determined by histopathology; pulmonary function testing; and assessment of TGF-ß, PDGF, and PAI-1 concentrations. Respiratory distress developed over time after SM inhalation, with progressive hypoxemia, respiratory distress, and weight loss. Histopathology confirmed the presence of both BO and PF, and both gradually worsened with time. Pulmonary function testing demonstrated a time-dependent increase in lung resistance, as well as a decrease in lung compliance. Concentrations of TGF-ß, PDGF, and PAI-1 were elevated at 28 days in lung, BAL fluid, and/or plasma. Time-dependent development of BO and PF occurs in lungs of rats exposed to SM inhalation, and the elevated concentrations of TGF-ß, PDGF, and PAI-1 suggest involvement of these profibrotic pathways in the aberrant remodeling after injury.


Asunto(s)
Bronquiolitis Obliterante/inducido químicamente , Gas Mostaza/administración & dosificación , Gas Mostaza/toxicidad , Fibrosis Pulmonar/inducido químicamente , Administración por Inhalación , Animales , Bronquiolitis Obliterante/metabolismo , Bronquiolitis Obliterante/mortalidad , Bronquiolitis Obliterante/patología , Líquido del Lavado Bronquioalveolar , Sustancias para la Guerra Química/toxicidad , Relación Dosis-Respuesta a Droga , Inhibidor 1 de Activador Plasminogénico/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/mortalidad , Ratas Sprague-Dawley , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pruebas de Función Respiratoria , Factor de Crecimiento Transformador beta1/metabolismo , Pérdida de Peso/efectos de los fármacos
17.
Ann Am Thorac Soc ; 20(1): 1-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584985

RESUMEN

E-cigarette or vaping product use-associated lung injury (EVALI) is a severe pulmonary illness associated with the use of e-cigarettes or vaping products that was officially identified and named in 2019. This American Thoracic Society workshop was convened in 2021 to identify and prioritize research and regulatory needs to adequately respond to the EVALI outbreak and to prevent similar instances of disease associated with e-cigarette or vaping product use. An interdisciplinary group of 26 experts in adult and pediatric clinical care, public health, regulatory oversight, and toxicology were convened for the workshop. Four major topics were examined: 1) the public health and regulatory response to EVALI; 2) EVALI clinical care; 3) mechanisms contributing to EVALI; and 4) needed actions to address the health effects of EVALI. Oral presentations and group discussion were the primary modes used to identify top priorities for addressing EVALI. Initiatives including a national EVALI case registry and biorepository, integrated electronic medical record coding system, U.S. Food and Drug Administration regulation and enforcement of nicotine e-cigarette standards, regulatory authority over nontobacco-derived e-cigarettes, training in evaluating exogenous exposures, prospective clinical studies, standardized clinical follow-up assessments, ability to more readily study effects of cannabinoid e-cigarettes, and research to identify biomarkers of exposure and disease were identified as critical needs. These initiatives will require substantial federal investment as well as changes to regulatory policy. Overall, the workshop identified the need to address the root causes of EVALI to prevent future outbreaks. An integrated approach from multiple perspectives is required, including public health; clinical, basic, and translational research; regulators; and users of e-cigarettes. Improving the public health response to reduce the risk of another substantial disease-inducing event depends on coordinated actions to better understand the inhalational toxicity of these products, informing the public of the risks, and developing and enforcing regulatory standards for all e-cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar , Vapeo , Adulto , Niño , Humanos , Estados Unidos/epidemiología , Lesión Pulmonar/epidemiología , Lesión Pulmonar/etiología , Lesión Pulmonar/terapia , Estudios Prospectivos , Brotes de Enfermedades , Nicotina , Vapeo/efectos adversos
18.
Sci Rep ; 12(1): 9738, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697719

RESUMEN

Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha (α)-diketone. Inhalation exposure to DA can cause significant airway epithelial cell injury, however, the mechanisms of toxicity remain poorly understood. The purpose of these experiments was to assess for changes in abundance and distribution of hemidesmosome-associated proteins following DA exposure that contribute to DA-induced epithelial toxicity. Human bronchial epithelial cells were grown in submerged cultures and exposed to three occupationally-relevant concentrations of DA (5.7, 8.6, or 11.4 mM) for 1 h. Following DA exposure, epithelial cells were cultured for 4 days to monitor for cell viability by MTT and WST-1 assays as well as for changes in cellular distribution and relative abundance of multiple hemidesmosome-associated proteins, including keratin 5 (KRT5), plectin (PLEC), integrin alpha 6 (ITGα6) and integrin beta 4 (ITGß4). Significant toxicity developed in airway epithelial cells exposed to DA at concentrations ≥ 8.6 mM. DA exposure resulted in post-translational modifications to hemidesmosome-associated proteins with KRT5 crosslinking and ITGß4 cleavage. Following DA exposure at 5.7 mM, these post-translational modifications to KRT5 resolved with time. Conversely, at DA concentrations ≥ 8.6 mM, modifications to KRT5 persisted in culture with decreased total abundance and perinuclear aggregation of hemidesmosome-associated proteins. Significant post-translational modifications to hemidesmosome-associated proteins develop in airway epithelial cells exposed to DA. At DA concentrations ≥ 8.6 mM, these hemidesmosome modifications persist in culture. Future work targeting hemidesmosome-associated protein modifications may prevent the development of lung disease following DA exposure.


Asunto(s)
Diacetil , Hemidesmosomas , Diacetil/metabolismo , Diacetil/toxicidad , Células Epiteliales/metabolismo , Hemidesmosomas/metabolismo , Humanos , Exposición por Inhalación , Procesamiento Proteico-Postraduccional
19.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386827

RESUMEN

Background: Electronic cigarette (e-cigarette) vaping, containing nicotine and/or Δ8, Δ9 or Δ10 or Δo tetrahydrocannabinol (Δn-THC), is associated with an outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). Despite thousands being hospitalised with EVALI, much remains unknown about diagnosis, treatment and disease pathogenesis. Biomarkers of inflammation, oxidative stress and lipid mediators may help identify e-cigarette users with EVALI. Methods: We collected plasma and urine along with demographic and vaping-related data of EVALI subjects (age 18-35 years) and non-users matched for sex and age in a pilot study. Biomarkers were assessed by ELISA/EIA and Luminex-based assays. Results: Elevated levels of THC metabolite (11-nor-9-carboxy-Δ9-THC) were found in plasma from EVALI subjects compared to non-users. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA damage biomarker, and 8-isoprostane, an oxidative stress marker, were slightly increased in urine samples from EVALI subjects compared to non-users. Conversely, plasma levels of lipid mediators, including resolvin D1 (RvD1) and prostaglandin E2 (PGE2), were significantly lower in EVALI subjects compared to non-users. Both pro-inflammatory biomarkers, such as tumour necrosis factor-α, macrophage inflammatory protein-1ß, RANTES (regulated on activation, normal T-cell expressed and secreted) and granulocyte-macrophage colony-stimulating factor, as well as anti-inflammatory biomarkers, such as interleukin-9 and CC10/16, were decreased in plasma from EVALI subjects compared to non-users, supportive of a possible dysregulated inflammatory response in EVALI subjects. Conclusions: Significant elevations in urine and plasma biomarkers of oxidative stress, as well as reductions in lipid mediators, were shown in EVALI subjects. These noninvasive biomarkers (8-OHdG, 8-isoprostane, RvD1 and CC10/16), either individually or collectively, may serve as tools in diagnosing future EVALI subjects.

20.
Pediatr Pulmonol ; 57(2): 529-537, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713989

RESUMEN

BACKGROUND AND OBJECTIVES: Plastic bronchitis (PB) is a condition characterized by the formation of thick airway casts leading to acute and often life-threatening airway obstruction. PB occurs mainly in pediatric patients with congenital heart disease (CHO) who have undergone staged surgical palliation (Glenn, Fontan), but can also occur after chemical inhalation, H1N1, severe COVID-19, sickle cell disease, severe asthma, and other diseases. Mortality risk from PB can be up to 40%-60%, and no treatment guideline exist. The objectives herein are to develop a standardized evaluation, classification, and treatment guideline for PB patients presenting with tracheobronchial casts, based on our experience with PB at the Children's Hospital of Colorado in Denver. METHODS: We describe 11 patients with CHO-associated PB (post-Fontan [n = 9], pre-Fontan [n = 2]) who presented with their initial episodes. We utilized histopathological analysis of tracheobronchial casts to guide treatment in these patients, utilizing our hospital-wide guideline document and classification system. RESULTS: We found that 100% of post-Fontan PB patients had fibrinous airway casts, while pre-Fontan PB casts were fibrinous only in one of two patients (50%). Utilizing histopathology as a guide to therapy, PB patients with fibrin airway casts were treated with airway-delivered fibrinolytics and anticoagulants, as well as aggressive airway clearance and other supportive care measures. These therapies resulted in successful cast resolution and improved survival in post-Fontan PB patients. CONCLUSION: We have shown an improved outcome in PB patients whose treatment plan was based on Denver's PB classification schema and standardized treatment guideline based on tracheobronchial cast histopathology.


Asunto(s)
Obstrucción de las Vías Aéreas , Bronquitis , COVID-19 , Procedimiento de Fontan , Subtipo H1N1 del Virus de la Influenza A , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/terapia , Bronquitis/diagnóstico , Bronquitis/terapia , Niño , Fibrina , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA