Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0298651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753655

RESUMEN

Dynamic functional connectivity investigates how the interactions among brain regions vary over the course of an fMRI experiment. Such transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort. In this paper, we develop a multi-subject Bayesian framework where the estimation of dynamic functional networks is informed by time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states. We assume the state-transition probabilities to vary over time and across subjects as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. We further assume sparsity in the network structures via shrinkage priors, and achieve edge selection in the estimated graph structures by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We evaluate the performances of our method vs alternative approaches on synthetic data. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, as a proxy of cognitive processing, and assess the heterogeneity of the effects of changes in pupil dilation on the subjects' propensity to change connectivity states. The heterogeneity of state occupancy across subjects provides an understanding of the relationship between increased pupil dilation and transitions toward different cognitive states.


Asunto(s)
Teorema de Bayes , Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Modelos Neurológicos , Cadenas de Markov , Conectoma/métodos , Mapeo Encefálico/métodos
2.
Brain Res Bull ; 202: 110733, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37586427

RESUMEN

The locus coeruleus (LC), a small subcortical structure in the brainstem, is the brain's principal source of norepinephrine. It plays a primary role in regulating stress, the sleep-wake cycle, and attention, and its degradation is associated with aging and neurodegenerative diseases associated with cognitive deficits (e.g., Parkinson's, Alzheimer's). Yet precisely how norepinephrine drives brain networks to support healthy cognitive function remains poorly understood - partly because LC's small size makes it difficult to study noninvasively in humans. Here, we characterized LC's influence on brain dynamics using a hidden Markov model fitted to functional neuroimaging data from healthy young adults across four attention-related brain networks and LC. We modulated LC activity using a behavioral paradigm and measured individual differences in LC magnetization transfer contrast. The model revealed five hidden states, including a stable state dominated by salience-network activity that occurred when subjects actively engaged with the task. LC magnetization transfer contrast correlated with this state's stability across experimental manipulations and with subjects' propensity to enter into and remain in this state. These results provide new insight into LC's role in driving spatiotemporal neural patterns associated with attention, and demonstrate that variation in LC integrity can explain individual differences in these patterns even in healthy young adults.


Asunto(s)
Encéfalo , Locus Coeruleus , Adulto Joven , Humanos , Locus Coeruleus/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Atención/fisiología , Norepinefrina/metabolismo , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA