Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Plant Biol ; 19(1): 123, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940081

RESUMEN

BACKGROUND: Maize is a crop in high demand for food purposes and consumers worldwide are increasingly concerned with food quality. However, breeding for improved quality is a complex task and therefore developing tools to select for better quality products is of great importance. Kernel composition, flour pasting behavior, and flour particle size have been previously identified as crucial for maize-based food quality. In this work we carried out a genome-wide association study to identify genomic regions controlling compositional and pasting properties of maize wholemeal flour. RESULTS: A collection of 132 diverse inbred lines, with a considerable representation of the food used Portuguese unique germplasm, was trialed during two seasons, and harvested samples characterized for main compositional traits, flour pasting parameters and mean particle size. The collection was genotyped with the MaizeSNP50 array. SNP-trait associations were tested using a mixed linear model accounting for genetic relatedness. Fifty-seven genomic regions were identified, associated with the 11 different quality-related traits evaluated. Regions controlling multiple traits were detected and potential candidate genes identified. As an example, for two viscosity parameters that reflect the capacity of the starch to absorb water and swell, the strongest common associated region was located near the dull endosperm 1 gene that encodes a starch synthase and is determinant on the starch endosperm structure in maize. CONCLUSIONS: This study allowed for identifying relevant regions on the maize genome affecting maize kernel composition and flour pasting behavior, candidate genes for the majority of the quality-associated genomic regions, or the most promising target regions to develop molecular tools to increase efficacy and efficiency of quality traits selection (such as "breadability") within maize breeding programs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Almidón/metabolismo , Zea mays/genética , Endospermo/genética , Endospermo/metabolismo , Harina , Genómica , Genotipo , Valor Nutritivo , Fenotipo , Fitomejoramiento , Semillas/genética , Semillas/metabolismo , Zea mays/metabolismo
2.
Biology (Basel) ; 13(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927334

RESUMEN

The ECPGR European Evaluation Network (EVA) for Maize involves genebanks, research institutions, and private breeding companies from nine countries focusing on the valorization of maize genetic resources across Europe. This study describes a diverse collection of 626 local landraces and traditional varieties of maize (Zea mays L.) from nine European genebanks, including criteria for selection of the collection and its genetic and phenotypic diversity. High-throughput pool genotyping grouped the landraces into nine genetic groups with a threshold of 0.6 admixture, while 277 accessions were designated admixed and likely to have resulted from previous breeding activities. The grouping correlated well with the geographic origins of the collection, also reflecting the various pathways of introduction of maize to Europe. Phenotypic evaluations of 588 accessions for flowering time and plant architecture in multilocation trials over three years confirmed the great diversity within the collection, although phenotypic clusters only partially correlated with the genetic grouping. The EVA approach promotes conservation of genetic resources and opens an opportunity to increase genetic variability for developing improved varieties and populations for farmers, with better adaptation to specific environments and greater tolerance to various stresses. As such, the EVA maize collection provides valuable sources of diversity for facing climate change due to the varieties' local adaptation.

3.
Foods ; 12(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38002202

RESUMEN

The production and consumption of organic products have been increasing in Portugal, as well as in the European Union as a whole. The main objective of this work is to understand the consumption habits of organic medicinal and aromatic plants (OMAPs) among Portuguese adults. An online questionnaire was distributed using social networks, resulting in the collection and statistical analysis of 300 responses. Of the participants who reported consuming OMAPs, 44.3% showed a daily consumption pattern. The most frequently mentioned OMAPs for fresh consumption were parsley (Petrosselinum crispum L., 92%), garlic (Allium sativum L., 84.1%), and coriander (Coriandrum sativum L., 78.1%). The most commonly mentioned OMAP for consumption as dried plants were oregano (Origanum vulgare L., 74.6%), lemon balm (Melissa officinalis L., 49.2%), and lemon verbena (Aloysia citrodora L., 46.8%). The main reasons cited for using OMAPs were their benefits to health (58.7% of participants), benefits to the environment (33.2%), and reduced salt consumption (29.5%). Among these, the main health benefits mentioned included anti-inflammatory properties (45.0%), prevention of cardiovascular diseases (41.6%), and prevention of high cholesterol (39.9%). Furthermore, 82.5% of respondents considered themselves sufficiently, well, or excellently informed about the nutritional properties of OMAPs. This research initiates a discussion about whether profiling OMAP consumption habits can serve as a valuable tool for promoting organic farming in Portugal, increasing OMAP production and consumption, and strengthening the connection between these products and potential positive human health effects.

4.
Front Microbiol ; 12: 636009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717028

RESUMEN

Maize is one of the most important crops worldwide and is the number one arable crop in Portugal. A transition from the conventional farming system to organic agriculture requires optimization of cultivars and management, the interaction of plant-soil rhizosphere microbiota being pivotal. The objectives of this study were to unravel the effect of population genotype and farming system on microbial communities in the rhizosphere of maize. Rhizosphere soil samples of two open-pollinated maize populations ("SinPre" and "Pigarro") cultivated under conventional and organic farming systems were taken during flowering and analyzed by next-generation sequencing (NGS). Phenological data were collected from the replicated field trial. A total of 266 fungi and 317 bacteria genera were identified in "SinPre" and "Pigarro" populations, of which 186 (69.9%) and 277 (87.4%) were shared among them. The microbiota of "Pigarro" showed a significant higher (P < 0.05) average abundance than the microbiota of "SinPre." The farming system had a statistically significant impact (P < 0.05) on the soil rhizosphere microbiota, and several fungal and bacterial taxa were found to be farming system-specific. The rhizosphere microbiota diversity in the organic farming system was higher than that in the conventional system for both varieties. The presence of arbuscular mycorrhizae (Glomeromycota) was mainly detected in the microbiota of the "SinPre" population under the organic farming systems and very rare under conventional systems. A detailed metagenome function prediction was performed. At the fungal level, pathotroph-saprotroph and pathotroph-symbiotroph lifestyles were modified by the farming system. For bacterial microbiota, the main functions altered by the farming system were membrane transport, transcription, translation, cell motility, and signal transduction. This study allowed identifying groups of microorganisms known for their role as plant growth-promoting rhizobacteria (PGPR) and with the capacity to improve crop tolerance for stress conditions, allowing to minimize the use of synthetic fertilizers and pesticides. Arbuscular mycorrhizae (phyla Glomeromycota) were among the most important functional groups in the fungal microbiota and Achromobacter, Burkholderia, Erwinia, Lysinibacillus, Paenibacillus, Pseudomonas, and Stenotrophomonas in the bacterial microbiota. In this perspective, the potential role of these microorganisms will be explored in future research.

5.
Front Nutr ; 8: 683399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071287

RESUMEN

Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production.

6.
J Agric Food Chem ; 68(13): 4051-4061, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32141752

RESUMEN

The interest in antioxidant compound breeding in maize (Zea mays L.), a major food crop, has increased in recent years. However, breeding of antioxidant compounds in maize can be hampered, given the complex genetic nature of these compounds. In this work, we followed a genome-wide association approach, using a unique germplasm collection (containing Portuguese germplasm), to study the genetic basis of several antioxidants in maize. Sixty-seven genomic regions associated with seven antioxidant compounds and two color-related traits were identified. Several significant associations were located within or near genes involved in the carotenoid (Zm00001d036345) and tocopherol biosynthetic pathways (Zm00001d017746). Some indications of a negative selection against α-tocopherol levels were detected in the Portuguese maize germplasm. The strongest single nucleotide polymorphism (SNP)-trait associations and the SNP alleles with larger effect sizes were pinpointed and set as priority for future validation studies; these associations detected now constitute a benchmark for developing molecular selection tools for antioxidant compound selection in maize.


Asunto(s)
Antioxidantes/metabolismo , Carotenoides/metabolismo , Genoma de Planta , Zea mays/genética , Alelos , Antioxidantes/análisis , Vías Biosintéticas , Carotenoides/análisis , Cromosomas de las Plantas/genética , Estudio de Asociación del Genoma Completo , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays/química , Zea mays/metabolismo
7.
J Agric Food Chem ; 68(29): 7809-7818, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571020

RESUMEN

Odor and aroma, resulting from the perception of volatiles by the olfactory receptors, are important in consumer food acceptance. To develop more efficient molecular breeding tools to improve the odor/aroma on maize (Zea mays L.), a staple food crop, increasing the knowledge on the genetic basis of maize volatilome is needed. In this work, we conducted a genome-wide association study on a unique germplasm collection to identify genomic regions controlling maize wholemeal flour's volatilome. We identified 64 regions on the maize genome and candidate genes controlling the levels of 15 volatiles, mainly aldehydes. As an example, the Zm00001d033623 gene was within a region associated with 2-octenal (E) and 2-nonenal (E), two byproducts of linoleic acid oxidation. This gene codes for linoleate 9S-lipoxygenase, an enzyme responsible for oxidizing linoleic acid. This knowledge can now support the development of molecular tools to increase the selection efficacy/efficiency of these volatiles within maize breeding programs.


Asunto(s)
Harina/análisis , Genoma de Planta , Compuestos Orgánicos Volátiles/química , Zea mays/genética , Estudio de Asociación del Genoma Completo , Genómica , Odorantes/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Zea mays/química , Zea mays/metabolismo
8.
Evol Appl ; 11(2): 254-270, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29387160

RESUMEN

Modern maize breeding programs gave rise to genetically uniform varieties that can affect maize's capacity to cope with increasing climate unpredictability. Maize populations, genetically more heterogeneous, can evolve and better adapt to a broader range of edaphic-climatic conditions. These populations usually suffer from low yields; it is therefore desirable to improve their agronomic performance while maintaining their valuable diversity levels. With this objective, a long-term participatory breeding/on-farm conservation program was established in Portugal. In this program, maize populations were subject to stratified mass selection. This work aimed to estimate the effect of on-farm stratified mass selection on the agronomic performance, quality, and molecular diversity of two historical maize populations. Multilocation field trials, comparing the initial populations with the derived selection cycles, showed that this selection methodology led to agronomic improvement for one of the populations. The molecular diversity analysis, using microsatellites, revealed that overall genetic diversity in both populations was maintained throughout selection. The comparison of quality parameters between the initial populations and the derived selection cycles was made using kernel from a common-garden experiment. This analysis showed that the majority of the quality traits evaluated progressed erratically over time. In conclusion, this breeding approach, through simple and low-cost methodologies, proved to be an alternative strategy for genetic resources' on-farm conservation.

9.
Front Plant Sci ; 8: 2203, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312428

RESUMEN

Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber), flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds). These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI) model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds) could still be found. Regarding the agronomic performance, farmers' maize populations had low, but considerably stable, grain yields across the tested environments. As for their genetic diversity, each farmers' population was genetically heterogeneous; nonetheless, all farmers' populations were distinct from each other's. In conclusion, and taking into consideration different quality improvement objectives, the integration of the data generated within this study allowed the outline and exploration of alternative directions for future breeding activities. As a consequence, more informed choices will optimize the use of the resources available and improve the efficiency of participatory breeding activities.

10.
PLoS One ; 10(4): e0124543, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25923975

RESUMEN

MAIZE EAR FASCIATION: Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. MATERIAL AND METHODS: Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. RESULTS AND DISCUSSION: Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. CONCLUSIONS: Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.


Asunto(s)
Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fenotipo , Banco de Semillas , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA