Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768962

RESUMEN

Parkinson's disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson's disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry's degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Cuerpo Estriado/patología , Trastorno Depresivo/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora/efectos de los fármacos , Destreza Motora/fisiología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuroglía/fisiología , Trastornos Parkinsonianos/patología , Fenotipo , Especificidad de la Especie , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Factores de Tiempo
2.
Int J Mol Sci ; 21(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422916

RESUMEN

Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several animal models have been developed not only to better understand the mechanisms underlying neurodegeneration but also to test the potential of emerging disease-modifying therapies. However, despite aging being the main risk factor for developing idiopathic PD, most of the studies do not use aged animals. Therefore, this study aimed at assessing the effect of aging in the unilateral 6-hydroxydopamine (6-OHDA)-induced animal model of PD. For this, female young adult and aged rats received a unilateral injection of 6-OHDA into the medial forebrain bundle. Subsequently, the impact of aging on 6-OHDA-induced effects on animal welfare, motor performance, and nigrostriatal integrity were assessed. The results showed that aging had a negative impact on animal welfare after surgery. Furthermore, 6-OHDA-induced impairments on skilled motor function were significantly higher in aged rats when compared with their younger counterparts. Nigrostriatal histological analysis further revealed an increased 6-OHDA-induced dopaminergic cell loss in the SNpc of aged animals when compared to young animals. Overall, our results demonstrate a higher susceptibility of aged animals to 6-OHDA toxic insult.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson Secundaria/fisiopatología , Enfermedad de Parkinson/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Trastornos Motores/inducido químicamente , Trastornos Motores/metabolismo , Trastornos Motores/patología , Oxidopamina/toxicidad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Ratas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
3.
Cells ; 12(21)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37947643

RESUMEN

Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Secretoma , Encéfalo , Oxidopamina , Organoides
4.
Stem Cell Rev Rep ; 19(1): 248-263, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152233

RESUMEN

Mesenchymal stem cells (MSCs) hold promising therapeutic potential in several clinical applications, mainly due to their paracrine activity. The implementation of future secretome-based therapeutic strategies requires the use of easily accessible MSCs sources that provide high numbers of cells with homogenous characteristics. MSCs obtained from induced pluripotent stem cells (iMSCs) have been put forward as an advantageous alternative to the gold-standard tissue sources, such as bone marrow (BM-MSCs). In this study, we aimed at comparing the secretome of BM-MSCs and iMSCs over long-term culture. For that, we performed a broad characterization of both sources regarding their identity, proteomic secretome analysis, as well as replicative senescence and associated phenotypes, including its effects on MSCs secretome composition and immunomodulatory action. Our results evidence a rejuvenated phenotype of iMSCs, which is translated into a superior proliferative capacity before the induction of replicative senescence. Despite this significant difference between iMSCs and BM-MSCs proliferation, both untargeted and targeted proteomic analysis revealed a similar secretome composition for both sources in pre-senescent and senescent states. These results suggest that shifting from the use of BM-MSCs to a more advantageous source, like iMSCs, may yield similar therapeutic effects as identified over the past years for this gold-standard MSC source.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Diferenciación Celular , Proteómica , Secretoma , Senescencia Celular
5.
Biochimie ; 189: 87-98, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34182001

RESUMEN

Human mesenchymal stem cells (hMSCs) secretome has been have been at the forefront of a new wave of possible therapeutic strategies for central nervous system neurodegenerative disorders, as Parkinson's disease (PD). While within its protein fraction, several promising proteins were already identified with therapeutic properties on PD, the potential of hMSCs-secretome vesicular fraction remains to be elucidated. Such highlighting is important, since hMSCs secretome-derived vesicles can act as biological nanoparticles with beneficial effects in different pathological contexts. Therefore, in this work, we have isolated hMSCs secretome vesicular fraction, and assessed their impact on neuronal survival, and differentiation on human neural progenitors' cells (hNPCs), and in a 6-hydroxydopamine (6-OHDA) rat model of PD when compared to hMSCs secretome (as a whole) and its protein derived fraction. From the results, we have found hMSCs vesicular fraction as polydispersity source of vesicles, which when applied in vitro was able to induce hNPCs differentiation at the same levels as the whole secretome, while the protein separated fraction was not able to induce such effect. In the context of PD, although distinct effects were observed, hMSCs secretome and its derived fractions displayed a positive impact on animals' motor and histological performance, thereby indicating that hMSCs secretome and its different fractions may impact different mechanisms and pathways. Overall, we concluded that the use of the secretome collected from hMSCs and its different fractions might be active modulators of different neuroregeneration mechanisms, which could open new therapeutical opportunities for their future use as a treatment for PD.


Asunto(s)
Células de la Médula Ósea/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson Secundaria/metabolismo , Animales , Células de la Médula Ósea/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/patología , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Células-Madre Neurales/patología , Oxidopamina/efectos adversos , Oxidopamina/farmacología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , Ratas , Ratas Wistar
6.
Elife ; 102021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34859784

RESUMEN

The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.


Asunto(s)
Ansiedad/genética , Trastornos de la Memoria/genética , Factor de Transcripción AP-2/deficiencia , Factores de Edad , Animales , Masculino , Ratones
7.
Biomedicines ; 9(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34944570

RESUMEN

The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)-or Machado-Joseph disease (MJD)-is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation-particularly in the cerebellum and basal ganglia-while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.

8.
Stem Cell Res ; 46: 101870, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32534166

RESUMEN

The study of human midbrain development and midbrain related diseases, like Parkinson's disease (PD), is limited by deficiencies in the currently available and validated laboratory models. Three dimensional midbrain organoids represent an innovative strategy to recapitulate some aspects of the complexity and physiology of the human midbrain. Nevertheless, also these novel organoid models exhibit some inherent weaknesses, including the presence of a necrotic core and batch-to-batch variability. Here we describe an optimized approach for the standardized generation of midbrain organoids that addresses these limitations, while maintaining key features of midbrain development like dopaminergic neuron and astrocyte differentiation. Moreover, we have established a novel time-efficient, fit for purpose analysis pipeline and provided proof of concept for its usage by investigating toxin induced PD.


Asunto(s)
Organoides , Enfermedad de Parkinson , Neuronas Dopaminérgicas , Humanos , Mesencéfalo , Neurogénesis
9.
Artículo en Inglés | MEDLINE | ID: mdl-31737616

RESUMEN

Parkinson's disease (PD) is characterized by a selective loss of dopamine (DA) neurons in the human midbrain causing motor dysfunctions. The exact mechanism behind dopaminergic cell death is still not completely understood and, so far, no cure or neuroprotective treatment for PD is available. Recent studies have brought attention to the variety of bioactive molecules produced by mesenchymal stem cells (MSCs), generally referred to as the secretome. Herein, we evaluated whether human MSCs-bone marrow derived (hBMSCs) secretome would be beneficial in a PD pre-clinical model, when compared directly with cell transplantation of hBMSCs alone. We used a 6-hydroxydpomanie (6-OHDA) rat PD model, and motor behavior was evaluated at different time points after treatments (1, 4, and 7 weeks). The impact of the treatments in the recovery of DA neurons was estimated by determining TH-positive neuronal densities in the substantia nigra and fibers in the striatum, respectively, at the end of the behavioral characterization. Furthermore, we determined the effect of the hBMSCs secretome on the neuronal survival of human neural progenitors in vitro, and characterized the secretome through proteomic-based approaches. This work demonstrates that the injection of hBMSCs secretome led to the rescue of DA neurons, when compared to transplantation of hBMSCs themselves, which can explain the recovery of secretome-injected animals' behavioral performance in the staircase test. Moreover, we observed that hBMSCs secretome induces higher levels of in vitro neuronal differentiation. Finally, the proteomic analysis revealed that hBMSCs secrete important exosome-related molecules, such as those related with the ubiquitin-proteasome and histone systems. Overall, this work provided important insights on the potential use of hBMSCs secretome as a therapeutic tool for PD, and further confirms the importance of the secreted molecules rather than the transplantation of hBMSCs for the observed positive effects. These could be likely through normalization of defective processes in PD, namely proteostasis or altered gene transcription, which lately can lead to neuroprotective effects.

10.
Expert Opin Biol Ther ; 18(12): 1235-1245, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30422014

RESUMEN

INTRODUCTION: The available therapeutic strategies for Parkinson's disease (PD) rely only on the amelioration of the symptomatology of the disease, lacking neuroprotection or neuroregeneration capacities. Therefore, the development of disease modifying strategies is extremely important for the management of PD in the long term. AREAS COVERED: In this review, the authors provide an overview of the current therapeutic approaches for PD and the emerging use of stem cell transplantation as an alternative. Particularly, the use of the secretome from mesenchymal stem cells (MSCs), as well as some methodologies used for the modulation of their paracrine signaling, will be discussed. Indeed, there is a growing body of literature highlighting the use of paracrine factors and vesicles secreted from different cell populations, for this purpose. EXPERT OPINION: Secretome from MSCs has shown its potential as a therapy for PD. Nevertheless, in the coming years, research should focus in several key aspects to enable the translation of this strategy from the bench to the bedside.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Terapia Molecular Dirigida/métodos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Medicina Regenerativa/métodos , Vías Secretoras/fisiología , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Comunicación Paracrina/fisiología
11.
Stem Cells Transl Med ; 7(11): 829-838, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30238668

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results from the death of dopamine (DA) neurons. Over recent years, differentiated or undifferentiated neural stem cells (NSCs) transplantation has been widely used as a means of cell replacement therapy. However, compelling evidence has brought attention to the array of bioactive molecules produced by stem cells, defined as secretome. As described in the literature, other cell populations have a high-neurotrophic activity, but little is known about NSCs. Moreover, the exploration of the stem cell secretome is only in its initial stages, particularly as applied to neurodegenerative diseases. Thus, we have characterized the secretome of human neural progenitor cells (hNPCs) through proteomic analysis and investigated its effects in a 6-hydroxidopamine (6-OHDA) rat model of PD in comparison with undifferentiated hNPCs transplantation. Results revealed that the injection of hNPCs secretome potentiated the histological recovery of DA neurons when compared to the untreated group 6-OHDA and those transplanted with cells (hNPCs), thereby supporting the functional motor amelioration of 6-OHDA PD animals. Additionally, hNPCs secretome proteomic characterization has revealed that these cells have the capacity to secrete a wide range of important molecules with neuroregulatory actions, which are most likely support the effects observed. Overall, we have concluded that the use of hNPCs secretome partially modulate DA neurons cell survival and ameliorate PD animals' motor deficits, disclosing improved results when compared to cell transplantation approaches, indicating that the secretome itself could represent a route for new therapeutic options for PD regenerative medicine. Stem Cells Translational Medicine 2018;7:829-838.


Asunto(s)
Células-Madre Neurales/trasplante , Enfermedad de Parkinson/terapia , Animales , Conducta Animal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Hidroxidopaminas/toxicidad , Masculino , Espectrometría de Masas , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Proteoma/análisis , Ratas , Ratas Wistar , Trasplante Heterólogo
12.
Biochimie ; 155: 83-91, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30077816

RESUMEN

Cell transplantation using Mesenchymal stem cell (MSC) secretome have recently been presented as a possible free-based therapy for CNS related disorders. MSC secretome is rich in several bio-factors that act synergically towards the repair of damaged tissues, thus making it an ideal candidate for regenerative applications. Great effort is currently being made to map the molecules that compose the MSC secretome. Previous proteomic characterization of the secretome (in the form of conditioned media - CM) of MSCs derived from adipose tissue (ASC), bone-marrow (BMSC) and umbilical cord (HUCPVC) was performed by our group, where proteins relevant for neuroprotection, neurogenic, neurodifferentiation, axon guidance and growth functions were identified. Moreover, we have found significant differences among the expression of several molecules, which may indicate that their therapeutic outcome might be distinct. Having this in mind, in the present study, the neuroregulatory potential of ASC, BMSC and HUCPVC CM in promoting neurodifferentiation and axonal outgrowth was tested in vitro, using human telencephalon neuroprogenitor cells and dorsal root ganglion explants, respectively. The CM from the three MSC populations induced neuronal differentiation from human neural progenitor cells, as well as neurite outgrowth from dorsal root ganglion explants. Moreover, all the MSC populations promoted the same extent of neurodifferentiation, while ASC CM demonstrated higher potential in promoting axonal growth.


Asunto(s)
Axones/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Especificidad de Órganos/fisiología
13.
Stem Cells Transl Med ; 6(2): 634-646, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28191785

RESUMEN

Research in the last decade strongly suggests that mesenchymal stem cell (MSC)-mediated therapeutic benefits are mainly due to their secretome, which has been proposed as a possible therapeutic tool for the treatment of Parkinson's disease (PD). Indeed, it has been shown that the MSC secretome increases neurogenesis and cell survival, and has numerous neuroprotective actions under different conditions. Additionally, using dynamic culturing conditions (through computer-controlled bioreactors) can further modulate the MSC secretome, thereby generating a more potent neurotrophic factor cocktail (i.e., conditioned medium). In this study, we have characterized the MSC secretome by proteomic-based analysis, investigating its therapeutic effects on the physiological recovery of a 6-hydroxidopamine (6-OHDA) PD rat model. For this purpose, we injected MSC secretome into the substantia nigra (SNc) and striatum (STR), characterizing the behavioral performance and determining histological parameters for injected animals versus untreated groups. We observed that the secretome potentiated the increase of dopaminergic neurons (i.e., tyrosine hydroxylase-positive cells) and neuronal terminals in the SNc and STR, respectively, thereby supporting the recovery observed in the Parkinsonian rats' motor performance outcomes (assessed by rotarod and staircase tests). Finally, proteomic characterization of the MSC secretome (through combined mass spectrometry analysis and Bioplex assays) revealed the presence of important neuroregulatory molecules, namely cystatin C, glia-derived nexin, galectin-1, pigment epithelium-derived factor, vascular endothelial growth factor, brain-derived neurotrophic factor, interleukin-6, and glial cell line-derived neurotrophic factor. Overall, we concluded that the use of human MSC secretome alone was able to partially revert the motor phenotype and the neuronal structure of 6-OHDA PD animals. This indicates that the human MSC secretome could represent a novel therapeutic for the treatment of PD. Stem Cells Translational Medicine 2017;6:634-646.


Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina , Trastornos Parkinsonianos/cirugía , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Humanos , Masculino , Actividad Motora , Neurogénesis , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/psicología , Fenotipo , Proteómica/métodos , Ratas Wistar , Vías Secretoras
14.
Front Pharmacol ; 7: 231, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536241

RESUMEN

Exosomes are membrane-enclosed nanovesicles (30-150 nm) that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs) conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects.

15.
Sci Rep ; 6: 27791, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27301770

RESUMEN

In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.


Asunto(s)
Reactores Biológicos , Diferenciación Celular , Computadores , Células Madre Mesenquimatosas/metabolismo , Neuronas/citología , Proteoma/metabolismo , Animales , Células de la Médula Ósea/citología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Inyecciones , Masculino , Espectrometría de Masas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Proteómica , Ratas Wistar
16.
Stem Cells Dev ; 25(14): 1073-83, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226274

RESUMEN

The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.


Asunto(s)
Tejido Adiposo/citología , Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Cordón Umbilical/irrigación sanguínea , Cordón Umbilical/citología , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Citoprotección/efectos de los fármacos , Humanos , Espectrometría de Masas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neurotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA