RESUMEN
Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.
Asunto(s)
Disfunción Cognitiva , Disbiosis , Microbioma Gastrointestinal , Hipocampo , Toxoplasma , Toxoplasmosis , Animales , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/microbiología , Toxoplasmosis/metabolismo , Toxoplasmosis/complicaciones , Disbiosis/metabolismo , Humanos , Masculino , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal/métodos , Butiratos/metabolismo , Femenino , Cognición/fisiologíaRESUMEN
BACKGROUND: Synovial inflammation, characterized by the activation of synovial fibroblasts (SFs), is a crucial factor to drive the progression of rheumatoid arthritis (RA). Polyene phosphatidylcholine (PPC), the classic hepatoprotective drug, has been reported to ameliorate arthritis in animals. However, the molecular mechanism remains poorly understood. METHODS AND RESULTS: Using in vitro primary synovial fibroblast (SFs) culture system, we revealed that phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, mediates the anti-inflammatory effect of PPC in lipopolysaccharide (LPS)-stimulated primary SFs. PPC decreased the production of TNF-α and IL-6 production while elevating the level of IL-10 and TGF-ß. Furthermore, PPC up-regulated the expression of PTEN, but inhibited the expression of p-AKT (ser473) and PI3K-p85α. Moreover, pre-treatment of SF1670 (the inhibitor of PTEN) or 740Y-P (the agonist of AKT/PI3K pathways) partially abrogated the anti-inflammatory effect of PPC. In addition, PPC could inhibit the expression of GLUT4, a key transporter of glucose that fuels the glycolysis, which is accompanied by the expression downregualtion of glycolytic enzymes PFKFB3 and PKM2. Furthermore, PPC could reduce ROS production and mitochondrial membrane potential in LPS-stimulated SFs and MH7A cell line. CONCLUSION: The present study supported that PPC can alleviate synovial inflammation, which involves in the elevation of PTEN and blockage of glycolysis.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Membrana Sinovial , Animales , Membrana Sinovial/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Fibroblastos/metabolismoRESUMEN
BACKGROUND: Gut homeostasis, including intestinal immunity and microbiome, is essential for cognitive function via the gut-brain axis. This axis is altered in high-fat diet (HFD)-induced cognitive impairment and is closely associated with neurodegenerative diseases. Dimethyl itaconate (DI) is an itaconate derivative and has recently attracted extensive interest due to its anti-inflammatory effect. This study investigated whether intraperitoneal administration of DI improves the gut-brain axis and prevents cognitive deficits in HF diet-fed mice. RESULTS: DI effectively attenuated HFD-induced cognitive decline in behavioral tests of object location, novel object recognition, and nesting building, concurrent with the improvement of hippocampal RNA transcription profiles of genes associated with cognition and synaptic plasticity. In agreement, DI reduced the damage of synaptic ultrastructure and deficit of proteins (BDNF, SYN, and PSD95), the microglial activation, and neuroinflammation in the HFD-fed mice. In the colon, DI significantly lowered macrophage infiltration and the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) in mice on the HF diet, while upregulating the expression of immune homeostasis-related cytokines (IL-22, IL-23) and antimicrobial peptide Reg3γ. Moreover, DI alleviated HFD-induced gut barrier impairments, including elevation of colonic mucus thickness and expression of tight junction proteins (zonula occludens-1, occludin). Notably, HFD-induced microbiome alteration was improved by DI supplementation, characterized by the increase of propionate- and butyrate-producing bacteria. Correspondingly, DI increased the levels of propionate and butyrate in the serum of HFD mice. Intriguingly, fecal microbiome transplantation from DI-treated HF mice facilitated cognitive variables compared with HF mice, including higher cognitive indexes in behavior tests and optimization of hippocampal synaptic ultrastructure. These results highlight the gut microbiota is necessary for the effects of DI in improving cognitive impairment. CONCLUSIONS: The present study provides the first evidence that DI improves cognition and brain function with significant beneficial effects via the gut-brain axis, suggesting that DI may serve as a novel drug for treating obesity-associated neurodegenerative diseases. Video Abstract.