RESUMEN
There is an unmet medical need for nonopioid pain therapies in human populations; several pathways are under investigation for possible therapeutic intervention. Tetrahydrobiopterin (BH4) has received attention recently as a mediator of neuropathic pain. Recent reports have implicated sepiapterin reductase (SPR) in this pain pathway as a regulator of BH4 production. To evaluate the role of SPR inhibition on BH4 reduction, we developed analytical methods to monitor the relationship between the plasma concentration of test article and endogenous pterins and applied these in the rat spinal nerve ligation pain model. Sepiapterin is an endogenous substrate, which accumulates upon inhibition of SPR. In response to a potent inhibitor of SPR, plasma concentrations of sepiapterin increased proportionally with exposure. An indirect-effect pharmacokinetic/pharmacodynamic model was developed to describe the relationship between the plasma pharmacokinetics of test article and plasma sepiapterin levels in the rat, which was used to determine an in vivo SPR IC50 value. SPR inhibition and mechanical allodynia were assessed coordinately with pterin biomarkers in plasma and at the site of neuronal injury (i.e., dorsal root ganglion). Upon daily oral administration for 3 consecutive days, unbound plasma concentrations of test article exceeded the unbound in vivo rat SPR IC90 throughout the dose intervals, leading to a 60% reduction in BH4 in the dorsal root ganglion. Despite evidence for pharmacological modulation of the BH4 pathway, there was no significant effect on the tactile paw withdrawal threshold relative to vehicle-treated controls.
Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Dimensión del Dolor/métodos , Animales , Biopterinas/análogos & derivados , Biopterinas/antagonistas & inhibidores , Biopterinas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Hiperalgesia/tratamiento farmacológico , Masculino , Neuralgia/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tacto/efectos de los fármacos , Tacto/fisiologíaRESUMEN
The key to the discovery of new pharmaceuticals is to develop molecules that interact with the intended target and minimize interaction with unintended molecular targets, therefore minimizing toxicity. This is aided by the use of various in vitro selectivity assays that are used to select agents most potent for the desired target. Typically, molecules from similar chemical series, with similar in vitro potencies, are expected to yield comparable in vivo pharmacological and toxicological profiles, predictive of target effects. However, in this study, we investigated the in vivo effects of two analogue compounds that similarly inhibit several receptor tyrosine kinases such as vascular endothelial growth factor receptor 1 (VEGFR/Flt1), vascular endothelial growth factor 2 (VEGFR2/kinase domain receptor/Flk-1), vascular endothelial growth factor receptor 3 (VEGFR3/Flt4), platelet-derived growth factor receptor (PDGFR), and Kit receptors, which bear similar chemical structures, have comparable potencies, but differ markedly in their rodent toxicity profiles. Global gene expression data were used to generate hypotheses regarding the existence of toxicity triggers that would reflect the perturbation of signaling in multiple organs such as the liver, adrenal glands, and the pancreas in response to compound treatment. We concluded that differences in pharmacokinetic properties of the two analogues, such as volume of distribution, half-life, and organ concentrations, resulted in marked differences in the chemical burden on target organs and may have contributed to the vast differences in toxicity profiles observed with the two otherwise similar molecules. We propose including select toxicokinetic parameters such as V(ss), T(1/2), and T(max) as additional criteria that could be used to rank order compounds from the same pharmacological series to possibly minimize organ toxicity. Assessment of toxicokinetics is not an atypical activity on toxicology studies, even in early screening studies; however, these data may not always be used in decision making for selecting or eliminating one compound over another. Finally, we illustrate that in vivo gene expression profiles can serve as a complementary assessor of this activity and simultaneously help provide an assessment of on or off-target biological activity.