Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 48(11): 3432-3443, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33772334

RESUMEN

PURPOSE: To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC). METHODS: One hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners. RESULTS: After a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67-0.88), 0.49 (0.25-0.67), 0.42 (0.25-0.60) and 0.63 (0.20-0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set. CONCLUSION: [18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient's outcome but remain subject to variability across PET/CT devices.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias del Cuello Uterino , Teorema de Bayes , Supervivencia sin Enfermedad , Femenino , Humanos , Recurrencia Local de Neoplasia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Neoplasias del Cuello Uterino/diagnóstico por imagen
3.
BMC Bioinformatics ; 16: 312, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415849

RESUMEN

BACKGROUND: In the last decade, a great number of methods for reconstructing gene regulatory networks from expression data have been proposed. However, very few tools and datasets allow to evaluate accurately and reproducibly those methods. Hence, we propose here a new tool, able to perform a systematic, yet fully reproducible, evaluation of transcriptional network inference methods. RESULTS: Our open-source and freely available Bioconductor package aggregates a large set of tools to assess the robustness of network inference algorithms against different simulators, topologies, sample sizes and noise intensities. CONCLUSIONS: The benchmarking framework that uses various datasets highlights the specialization of some methods toward network types and data. As a result, it is possible to identify the techniques that have broad overall performances.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Algoritmos , Área Bajo la Curva , Benchmarking , Humanos , Curva ROC
4.
Genome Res ; 22(7): 1334-49, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22456606

RESUMEN

Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein-protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma de los Insectos , Animales , Secuencia de Bases , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Mapeo Cromosómico/métodos , Cromosomas/genética , Cromosomas/metabolismo , Secuencia Conservada , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Modelos Lineales , Modelos Genéticos , Anotación de Secuencia Molecular , Sistema Nervioso/citología , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Motivos de Nucleótidos , Especificidad de Órganos , Unión Proteica , Mapeo de Interacción de Proteínas , Elementos Reguladores de la Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Micromachines (Basel) ; 13(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35744447

RESUMEN

Bright field microscopes are particularly useful tools for biologists for cell and tissue observation, phenotyping, cell counting, and so on. Direct cell observation provides a wealth of information on cells' nature and physiological condition. Microscopic analyses are, however, time-consuming and usually not easy to parallelize. We describe the fabrication of a stand-alone microscope able to automatically collect samples with 3D printed pumps, and capture images at up to 50× optical magnification with a digital camera at a good throughput (up to 24 different samples can be collected and scanned in less than 10 min). Furthermore, the proposed device can store and analyze pictures using computer vision algorithms running on a low power integrated single board computer. Our device can perform a large set of tasks, with minimal human intervention, that no single commercially available machine can perform. The proposed open-hardware device has a modular design and can be freely reproduced at a very competitive price with the use of widely documented and user-friendly components such as Arduino, Raspberry pi, and 3D printers.

6.
J Nucl Med ; 63(12): 1933-1940, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35589406

RESUMEN

Sarcoidosis and lymphoma often share common features on 18F-FDG PET/CT, such as intense hypermetabolic lesions in lymph nodes and multiple organs. We aimed at developing and validating radiomics signatures to differentiate sarcoidosis from Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL). Methods: We retrospectively collected 420 patients (169 sarcoidosis, 140 HL, and 111 DLBCL) who underwent pretreatment 18F-FDG PET/CT at the University Hospital of Liege. The studies were randomly distributed to 4 physicians, who gave their diagnostic suggestion among the 3 diseases. The individual and pooled performance of the physicians was then calculated. Interobserver variability was evaluated using a sample of 34 studies interpreted by all physicians. Volumes of interest were delineated over the lesions and the liver using MIM software, and 215 radiomics features were extracted using the RadiomiX Toolbox. Models were developed combining clinical data (age, sex, and weight) and radiomics (original and tumor-to-liver TLR radiomics), with 7 different feature selection approaches and 4 different machine-learning (ML) classifiers, to differentiate sarcoidosis and lymphomas on both lesion-based and patient-based approaches. Results: For identifying lymphoma versus sarcoidosis, physicians' pooled sensitivity, specificity, area under the receiver-operating-characteristic curve (AUC), and accuracy were 0.99 (95% CI, 0.97-1.00), 0.75 (95% CI, 0.68-0.81), 0.87 (95% CI, 0.84-0.90), and 89.3%, respectively, whereas for identifying HL in the tumor population, it was 0.58 (95% CI, 0.49-0.66), 0.82 (95% CI, 0.74-0.89), 0.70 (95% CI, 0.64-0.75) and 68.5%, respectively. Moderate agreement was found among observers for the diagnosis of lymphoma versus sarcoidosis and HL versus DLBCL, with Fleiss κ-values of 0.66 (95% CI, 0.45-0.87) and 0.69 (95% CI, 0.45-0.93), respectively. The best ML models for identifying lymphoma versus sarcoidosis showed an AUC of 0.94 (95% CI, 0.93-0.95) and 0.85 (95% CI, 0.82-0.88) in lesion- and patient-based approaches, respectively, using TLR radiomics (plus age for the second). To differentiate HL from DLBCL, we obtained an AUC of 0.95 (95% CI, 0.93-0.96) in the lesion-based approach using TLR radiomics and 0.86 (95% CI, 0.80-0.91) in the patient-based approach using original radiomics and age. Conclusion: Characterization of sarcoidosis and lymphoma lesions is feasible using ML and radiomics, with very good to excellent performance, equivalent to or better than that of physicians, who showed significant interobserver variability in their assessment.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Sarcoidosis , Humanos , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos , Enfermedad de Hodgkin/diagnóstico por imagen , Aprendizaje Automático , Sarcoidosis/diagnóstico por imagen
7.
J Air Waste Manag Assoc ; 61(3): 285-94, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21416755

RESUMEN

Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).


Asunto(s)
Biocombustibles , Combustibles Fósiles , Vehículos a Motor , Emisiones de Vehículos
8.
HardwareX ; 9: e00199, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35601242

RESUMEN

Many routines in biological experiments require the precise handling of liquid volumes in the range of microliters up to liters. In this paper, we describe a new wireless controller that is adapted to liquid manipulation tasks, in particular when combined with the proposed 3D-printed pumps. It can be built from widely available electronic components and managed with open-source software. The use of peristaltic pumps enables to move volumes from milliliters to liters with a relative error below 1% or a syringe pump capable of injecting volumes in the range of milliliters with microliter accuracy. The system is remotely controllable over WiFi and easily automated using the MQTT communication protocol. The programming of the microcontroller is performed on the Arduino IDE. The WiFi settings and the calibration value can be easily modified, stored and exported in the form of a JSON file to create a user friendly, plug and play and easily scalable device. Additional sensors or actuators can be added, allowing the system to adapt to various usages. Finally, in addition to its low manufacturing cost and its capability to fit a large variety of tasks involving liquid handling, our system has been specifically designed for research environments where adaptability and repeatability of experiments is essential.

9.
Methods Mol Biol ; 1883: 283-302, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30547405

RESUMEN

Inferring gene regulatory networks from expression data is a very challenging problem that has raised the interest of the scientific community. Different algorithms have been proposed to try to solve this issue, but it has been shown that different methods have some particular biases and strengths, and none of them is the best across all types of data and datasets. As a result, the idea of aggregating various network inferences through a consensus mechanism naturally arises. In this chapter, a common framework to standardize already proposed consensus methods is presented, and based on this framework different proposals are introduced and analyzed in two different scenarios: Homogeneous and Heterogeneous. The first scenario reflects situations where the networks to be aggregated are rather similar because they are obtained with inference algorithms working on the same data, whereas the second scenario deals with very diverse networks because various sources of data are used to generate the individual networks. A procedure for combining multiple network inference algorithms is analyzed in a systematic way. The results show that there is a very significant difference between these two scenarios, and that the best way to combine networks in the Heterogeneous scenario is not the most commonly used. We show in particular that aggregation in the Heterogeneous scenario can be very beneficial if the individual networks are combined with our new proposed method ScaleLSum.


Asunto(s)
Redes Reguladoras de Genes , Modelos Genéticos , Biología de Sistemas/métodos , Aprendizaje Automático no Supervisado , Conjuntos de Datos como Asunto , Biología de Sistemas/instrumentación
10.
BMC Bioinformatics ; 9: 461, 2008 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-18959772

RESUMEN

RESULTS: This paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package returns a network where nodes denote genes, edges model statistical dependencies between genes and the weight of an edge quantifies the statistical evidence of a specific (e.g transcriptional) gene-to-gene interaction. Four different entropy estimators are made available in the package minet (empirical, Miller-Madow, Schurmann-Grassberger and shrink) as well as four different inference methods, namely relevance networks, ARACNE, CLR and MRNET. Also, the package integrates accuracy assessment tools, like F-scores, PR-curves and ROC-curves in order to compare the inferred network with a reference one. CONCLUSION: The package minet provides a series of tools for inferring transcriptional networks from microarray data. It is freely available from the Comprehensive R Archive Network (CRAN) as well as from the Bioconductor website.


Asunto(s)
Biología Computacional/métodos , Algoritmos , Interpretación Estadística de Datos , Reacciones Falso Positivas , Perfilación de la Expresión Génica/métodos , Internet , Modelos Estadísticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reconocimiento de Normas Patrones Automatizadas/métodos , Lenguajes de Programación , Curva ROC , Reproducibilidad de los Resultados , Programas Informáticos , Transcripción Genética
11.
J Air Waste Manag Assoc ; 57(1): 102-10, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17269235

RESUMEN

Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Contaminación del Aire/análisis , Aceites Combustibles/estadística & datos numéricos , Navíos , Algoritmos , Efecto Invernadero
12.
BioData Min ; 10: 15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484519

RESUMEN

BACKGROUND: Reverse engineering of gene regulatory networks (GRNs) from gene expression data is a classical challenge in systems biology. Thanks to high-throughput technologies, a massive amount of gene-expression data has been accumulated in the public repositories. Modelling GRNs from multiple experiments (also called integrative analysis) has; therefore, naturally become a standard procedure in modern computational biology. Indeed, such analysis is usually more robust than the traditional approaches, which suffer from experimental biases and the low number of samples by analysing individual datasets. To date, there are mainly two strategies for the problem of interest: the first one ("data merging") merges all datasets together and then infers a GRN whereas the other ("networks ensemble") infers GRNs from every dataset separately and then aggregates them using some ensemble rules (such as ranksum or weightsum). Unfortunately, a thorough comparison of these two approaches is lacking. RESULTS: In this work, we are going to present another meta-analysis approach for inferring GRNs from multiple studies. Our proposed meta-analysis approach, adapted to methods based on pairwise measures such as correlation or mutual information, consists of two steps: aggregating matrices of the pairwise measures from every dataset followed by extracting the network from the meta-matrix. Afterwards, we evaluate the performance of the two commonly used approaches mentioned above and our presented approach with a systematic set of experiments based on in silico benchmarks. CONCLUSIONS: We proposed a first systematic evaluation of different strategies for reverse engineering GRNs from multiple datasets. Experiment results strongly suggest that assembling matrices of pairwise dependencies is a better strategy for network inference than the two commonly used ones.

13.
Front Plant Sci ; 8: 447, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28421089

RESUMEN

Root system analysis is a complex task, often performed with fully automated image analysis pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to underestimated biases. We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root system images (10,000). For each image, three levels of noise were created. This library was used to evaluate the accuracy and usefulness of several image descriptors classically used in root image analysis softwares. Our analysis highlighted that the accuracy of the different traits is strongly dependent on the quality of the images and the type, size, and complexity of the root systems analyzed. Our study also demonstrated that machine learning algorithms can be trained on a synthetic library to improve the estimation of several root system traits. Overall, our analysis is a call to caution when using automatic root image analysis tools. If a thorough calibration is not performed on the dataset of interest, unexpected errors might arise, especially for large and complex root images. To facilitate such calibration, both the image library and the different codes used in the study have been made available to the community.

14.
Gigascience ; 6(10): 1-7, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29020748

RESUMEN

Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Plantones/genética , Triticum/genética
16.
Science ; 330(6012): 1787-97, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-21177974

RESUMEN

To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Asunto(s)
Cromatina , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Genoma de los Insectos , Anotación de Secuencia Molecular , Animales , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Biología Computacional/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Genes de Insecto , Genómica/métodos , Histonas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-19148299

RESUMEN

The reverse engineering of transcription regulatory networks from expression data is gaining large interest in the bioinformatics community. An important family of inference techniques is represented by algorithms based on information theoretic measures which rely on the computation of pairwise mutual information. This paper aims to study the impact of the entropy estimator on the quality of the inferred networks. This is done by means of a comprehensive study which takes into consideration three state-of-the-art mutual information algorithms: ARACNE, CLR, and MRNET. Two different setups are considered in this work. The first one considers a set of 12 synthetically generated datasets to compare 8 different entropy estimators and three network inference algorithms. The two methods emerging as the most accurate ones from the first set of experiments are the MRNET method combined with the newly applied Spearman correlation and the CLR method combined with the Pearson correlation. The validation of these two techniques is then carried out on a set of 10 public domain microarray datasets measuring the transcriptional regulatory activity in the yeast organism.

18.
Artículo en Inglés | MEDLINE | ID: mdl-18354736

RESUMEN

The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR), an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes) network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA