RESUMEN
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Asunto(s)
Ritmo Circadiano , Sueño , Humanos , Ritmo Circadiano/genética , Sueño/genética , FenotipoRESUMEN
BACKGROUND: Narcolepsy type 1 is caused by severe loss or lack of brain orexin neuropeptides. METHODS: We conducted a phase 2, randomized, placebo-controlled trial of TAK-994, an oral orexin receptor 2-selective agonist, in patients with narcolepsy type 1. Patients with confirmed narcolepsy type 1 according to clinical criteria were randomly assigned to receive twice-daily oral TAK-994 (30 mg, 90 mg, or 180 mg) or placebo. The primary end point was the mean change from baseline to week 8 in average sleep latency (the time it takes to fall asleep) on the Maintenance of Wakefulness Test (range, 0 to 40 minutes; normal ability to stay awake, ≥20 minutes). Secondary end points included the change in the Epworth Sleepiness Scale (ESS) score (range, 0 to 24, with higher scores indicating greater daytime sleepiness; normal, <10) and the weekly cataplexy rate. RESULTS: Of the 73 patients, 17 received TAK-994 at a dose of 30 mg twice daily, 20 received 90 mg twice daily, 19 received 180 mg twice daily, and 17 received placebo. The phase 2 trial and an extension trial were terminated early owing to hepatic adverse events. Primary end-point data were available for 41 patients (56%); the main reason for missing data was early trial termination. Least-squares mean changes to week 8 in average sleep latency on the MWT were 23.9 minutes in the 30-mg group, 27.4 minutes in the 90-mg group, 32.6 minutes in the 180-mg group, and -2.5 minutes in the placebo group (difference vs. placebo, 26.4 minutes in the 30-mg group, 29.9 minutes in the 90-mg group, and 35.0 minutes the 180-mg group; P<0.001 for all comparisons). Least-squares mean changes to week 8 in the ESS score were -12.2 in the 30-mg group, -13.5 in the 90-mg group, -15.1 in the 180-mg group, and -2.1 in the placebo group (difference vs. placebo, -10.1 in the 30-mg group, -11.4 in the 90-mg group, and -13.0 in the 180-mg group). Weekly incidences of cataplexy at week 8 were 0.27 in the 30-mg group, 1.14 in the 90-mg group, 0.88 in the 180-mg group, and 5.83 in the placebo group (rate ratio vs. placebo, 0.05 in the 30-mg group, 0.20 in the 90-mg group, and 0.15 in the 180-mg group). A total of 44 of 56 patients (79%) receiving TAK-994 had adverse events, most commonly urinary urgency or frequency. Clinically important elevations in liver-enzyme levels occurred in 5 patients, and drug-induced liver injury meeting Hy's law criteria occurred in 3 patients. CONCLUSIONS: In a phase 2 trial involving patients with narcolepsy type 1, an orexin receptor 2 agonist resulted in greater improvements on measures of sleepiness and cataplexy than placebo over a period of 8 weeks but was associated with hepatotoxic effects. (Funded by Takeda Development Center Americas; TAK-994-1501 and TAK-994-1504 ClinicalTrials.gov numbers, NCT04096560 and NCT04820842.).
Asunto(s)
Narcolepsia , Receptores de Orexina , Orexinas , Humanos , Cataplejía/complicaciones , Cataplejía/tratamiento farmacológico , Cataplejía/epidemiología , Método Doble Ciego , Narcolepsia/tratamiento farmacológico , Narcolepsia/complicaciones , Narcolepsia/epidemiología , Receptores de Orexina/agonistas , Receptores de Orexina/uso terapéutico , Somnolencia/efectos de los fármacos , Resultado del Tratamiento , Orexinas/análisis , Orexinas/deficiencia , Orexinas/farmacología , Química Encefálica/efectos de los fármacos , Administración Oral , Enfermedad Hepática Inducida por Sustancias y Drogas/etiologíaRESUMEN
Sleep remains one of the least understood phenomena in biology--even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association studies (GWAS) have uncovered â¼14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep.
Asunto(s)
Trastornos del Sueño-Vigilia/genética , Sueño/genética , Animales , Relojes Circadianos , Estudio de Asociación del Genoma Completo , Humanos , Modelos Animales , Proteínas del Tejido Nervioso/fisiología , Neurotransmisores/metabolismo , Transducción de Señal , Sueño/fisiología , Trastornos del Sueño-Vigilia/fisiopatologíaRESUMEN
DNA methyltransferase type 1 (DNMT1) is a major enzyme involved in maintaining the methylation pattern after DNA replication. Mutations in DNMT1 have been associated with autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). We used fibroblasts, induced pluripotent stem cells (iPSCs) and induced neurons (iNs) generated from patients with ADCA-DN and controls, to explore the epigenomic and transcriptomic effects of mutations in DNMT1. We show cell type-specific changes in gene expression and DNA methylation patterns. DNA methylation and gene expression changes were negatively correlated in iPSCs and iNs. In addition, we identified a group of genes associated with clinical phenotypes of ADCA-DN, including PDGFB and PRDM8 for cerebellar ataxia, psychosis and dementia and NR2F1 for deafness and optic atrophy. Furthermore, ZFP57, which is required to maintain gene imprinting through DNA methylation during early development, was hypomethylated in promoters and exhibited upregulated expression in patients with ADCA-DN in both iPSC and iNs. Our results provide insight into the functions of DNMT1 and the molecular changes associated with ADCA-DN, with potential implications for genes associated with related phenotypes.
Asunto(s)
Ataxia Cerebelosa , Sordera , Humanos , Ataxia Cerebelosa/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Transcriptoma/genética , Epigenómica , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , Sordera/genética , Mutación , ADNRESUMEN
Encephalitis with antibodies to leucine-rich glioma-inactivated 1 (LGI1-Ab-E) is a common form of autoimmune encephalitis, presenting with seizures and neuropsychiatric changes, predominantly in older males. More than 90% of patients carry the human leucocyte antigen (HLA) class II allele, HLA-DRB1*07:01. However, this is also present in 25% of healthy controls. Therefore, we hypothesised the presence of additional genetic predispositions. In this genome-wide association study and meta-analysis, we studied a discovery cohort of 131 French LGI1-Ab-E and a validation cohort of 126 American, British and Irish LGI1-Ab-E patients, ancestry-matched to 2613 and 2538 European controls, respectively. Outside the known major HLA signal, we found two single nucleotide polymorphisms (SNPs) at genome-wide significance (p < 5 x 10-8), implicating PTPRD, a protein tyrosine phosphatase, and LINC00670, a non-protein coding RNA gene. Meta-analysis defined four additional non-HLA loci, including the protein coding COBL gene. Polygenic risk scores with and without HLA variants proposed a contribution of non-HLA loci. In silico network analyses suggested LGI1 and PTPRD mediated interactions via the established receptors of LGI1, ADAM22 and ADAM23. Our results identify new genetic loci in LGI1-Ab-E. These findings present opportunities for mechanistic studies and offer potential markers of susceptibility, prognostics and therapeutic responses.
RESUMEN
Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01â¼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05â¼DQB1*05:01, HLA-DQA1*01:01â¼DQB1*05:01 and HLA-DQA1*01:04â¼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11â years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05â¼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.
Asunto(s)
Cadenas beta de HLA-DQ , Cadenas HLA-DRB1 , Humanos , Cadenas HLA-DRB1/genética , Masculino , Cadenas beta de HLA-DQ/genética , Femenino , Persona de Mediana Edad , Adulto , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/inmunología , Anciano , Autoanticuerpos/inmunología , Predisposición Genética a la Enfermedad , Adulto Joven , Adolescente , GenotipoRESUMEN
Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (â¼11%) versus pHA273-287 or NP17-31 antigens (â¼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αß sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Narcolepsia , Orexinas , Receptores de Antígenos de Linfocitos T , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana , Narcolepsia/inmunología , Narcolepsia/fisiopatología , Orexinas/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Virales/inmunologíaRESUMEN
Narcolepsy type 1 (NT1) is a sleep disorder caused by a loss of orexinergic neurons. Narcolepsy type 2 (NT2) is heterogeneous; affected individuals typically have normal orexin levels. Following evaluation in mice, the effects of the orexin 2 receptor (OX2R)-selective agonist danavorexton were evaluated in single- and multiple-rising-dose studies in healthy adults, and in individuals with NT1 and NT2. In orexin/ataxin-3 narcolepsy mice, danavorexton reduced sleep/wakefulness fragmentation and cataplexy-like episodes during the active phase. In humans, danavorexton administered intravenously was well tolerated and was associated with marked improvements in sleep latency in both NT1 and NT2. In individuals with NT1, danavorexton dose-dependently increased sleep latency in the Maintenance of Wakefulness Test, up to the ceiling effect of 40 min, in both the single- and multiple-rising-dose studies. These findings indicate that OX2Rs remain functional despite long-term orexin loss in NT1. OX2R-selective agonists are a promising treatment for both NT1 and NT2.
Asunto(s)
Estimulantes del Sistema Nervioso Central , Narcolepsia , Receptores de Orexina , Adulto , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Cataplejía/tratamiento farmacológico , Cataplejía/genética , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Narcolepsia/tratamiento farmacológico , Narcolepsia/genética , Neuronas/metabolismo , Receptores de Orexina/agonistas , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Receptores de Orexina/uso terapéutico , Orexinas/genética , Orexinas/metabolismo , Fenotipo , Vigilia/efectos de los fármacos , Vigilia/genéticaRESUMEN
Restless legs syndrome is a prevalent, sensorimotor sleep disorder temporarily relieved by movement, with evidence of symptomatic improvement with regular exercise. The present study describes perceptions of the effects of exercise on symptoms of restless legs syndrome. Participants (N = 528) completed a mixed-methods (i.e. numerical and narrative), nationwide survey including items assessing personal experiences with exercise and restless legs syndrome (both positive and negative), as well as restless legs syndrome diagnosis, restless legs syndrome severity, and demographic and clinical characteristics. Responses varied widely on specific experiences with exercise, but a higher percentage of participants indicated positive experiences with exercise than those who reported negative experiences (72%-40%, respectively) with exercise. Further, 54% of respondents reported that exercise only improves restless legs syndrome, while 24% reported exercise only worsens symptoms. Participants described that any abrupt change in exercise routine would almost always elicit restless legs syndrome symptoms (e.g. hiking for a long time, stopping an exercise routine), and that a consistent pattern of exercise improved restless legs syndrome symptoms with an overall beneficial effect on the frequency of symptomatic bouts. Participants further described time of day as impactful for their exercise experience, with > 50% indicating morning exercise improves symptoms and evening exercise worsens symptoms. Participants described several questions that they wanted answered regarding the evidence for exercise in restless legs syndrome and specific exercise prescription recommendations. The present study describes information crucial to the creation of stakeholder-informed health promotion programs for individuals with restless legs syndrome to optimize personalized treatment plans that could prevent and manage symptoms.
Asunto(s)
Síndrome de las Piernas Inquietas , Humanos , Síndrome de las Piernas Inquietas/tratamiento farmacológico , Ejercicio Físico , Terapia por Ejercicio/métodos , Encuestas y CuestionariosRESUMEN
Patients with herpes simplex virus (HSV) encephalitis (HSE) often develop neuronal autoantibody-associated encephalitis (AE) post-infection. Risk factors of AE are unknown. We tested the hypotheses that predisposition for AE post-HSE may be involved, including genetic variants at specific loci, human leucocyte (HLA) haplotypes, or the blood innate immune response against HSV, including type I interferon (IFN) immunity. Patients of all ages with HSE diagnosed between 1 January 2014 and 31 December 2021 were included in one of two cohorts depending on whether the recruitment was at HSE onset (Spanish Cohort A) or by the time of new neurological manifestations (international Cohort B). Patients were assessed for the type of neurological syndromes; HLA haplotypes; blood type I-IFN signature [RNA quantification of 6 or 28 IFN-response genes (IRG)] and toll-like receptor (TLR3)-type I IFN-related gene mutations. Overall, 190 patients (52% male) were recruited, 93 in Cohort A and 97 in Cohort B. Thirty-nine (42%) patients from Cohort A developed neuronal autoantibodies, and 21 (54%) of them developed AE. Three syndromes (choreoathetosis, anti-NMDAR-like encephalitis and behavioural-psychiatric) showed a high (≥95% cases) association with neuronal autoantibodies. Patients who developed AE post-HSE were less likely to carry the allele HLA-A*02 (4/21, 19%) than those who did not develop AE (42/65, 65%, P = 0.0003) or the Spanish general population (2005/4335, 46%, P = 0.0145). Blood IFN signatures using 6 or 28 IRG were positive in 19/21 (91%) and 18/21 (86%) patients at HSE onset, and rapidly decreased during follow-up. At Day 21 after HSE onset, patients who later developed AE had higher median IFN signature compared with those who did not develop AE [median Zs-6-IRG 1.4 (0.6; 2.0) versus 0.2 (-0.4; 0.8), P = 0.03]. However, a very high median Zs-6-IRG (>4) or persistently increased IFN signature associated with uncontrolled viral infection. Whole exome sequencing showed that the percentage of TLR3-IFN-related mutations in patients who developed AE was not different from those who did not develop AE [3/37 (8%) versus 2/57 (4%), P = 0.379]. Multivariate logistic regression showed that a moderate increase of the blood IFN signature at Day 21 (median Zs-6-IRG >1.5 but <4) was the most important predictor of AE post-HSE [odds ratio 34.8, interquartile ratio (1.7-691.9)]. Altogether, these findings show that most AE post-HSE manifest with three distinct syndromes, and HLA-A*02, but not TLR3-IFN-related mutations, confer protection from developing AE. In addition to neuronal autoantibodies, the blood IFN signature in the context of HSE may be potentially useful for the diagnosis and monitoring of HSE complications.
Asunto(s)
Encefalitis por Herpes Simple , Interferón Tipo I , Enfermedades del Sistema Nervioso , Humanos , Masculino , Femenino , Encefalitis por Herpes Simple/complicaciones , Encefalitis por Herpes Simple/genética , Receptor Toll-Like 3/genética , Autoanticuerpos , Antígenos HLA-ARESUMEN
Kleine-Levin syndrome (KLS) is a rare disorder characterized by severe episodic hypersomnia, with cognitive impairment accompanied by apathy or disinhibition. Pathophysiology is unknown, although imaging studies indicate decreased activity in hypothalamic/thalamic areas during episodes. Familial occurrence is increased, and risk is associated with reports of a difficult birth. We conducted a worldwide case-control genome-wide association study in 673 KLS cases collected over 14 y, and ethnically matched 15,341 control individuals. We found a strong genome-wide significant association (rs71947865, Odds Ratio [OR] = 1.48, P = 8.6 × 10-9) within the 3'region of TRANK1 gene locus, previously associated with bipolar disorder and schizophrenia. Strikingly, KLS cases with rs71947865 variant had significantly increased reports of a difficult birth. As perinatal outcomes have dramatically improved over the last 40 y, we further stratified our sample by birth years and found that recent cases had a significantly reduced rs71947865 association. While the rs71947865 association did not replicate in the entire follow-up sample of 171 KLS cases, rs71947865 was significantly associated with KLS in the subset follow-up sample of 59 KLS cases who reported birth difficulties (OR = 1.54, P = 0.01). Genetic liability of KLS as explained by polygenic risk scores was increased (pseudo R2 = 0.15; P < 2.0 × 10-22 at P = 0.5 threshold) in the follow-up sample. Pathway analysis of genetic associations identified enrichment of circadian regulation pathway genes in KLS cases. Our results suggest links between KLS, circadian regulation, and bipolar disorder, and indicate that the TRANK1 polymorphisms in conjunction with reported birth difficulties may predispose to KLS.
Asunto(s)
Citocinas/genética , Susceptibilidad a Enfermedades , Variación Genética , Síndrome de Kleine-Levin/complicaciones , Síndrome de Kleine-Levin/genética , Complicaciones del Trabajo de Parto/epidemiología , Complicaciones del Trabajo de Parto/etiología , Trastorno Bipolar/etiología , Trastornos de Somnolencia Excesiva/etiología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Síndrome de Kleine-Levin/epidemiología , Masculino , Oportunidad Relativa , Polimorfismo Genético , Embarazo , Medición de Riesgo , Factores de RiesgoRESUMEN
BACKGROUND: Atrial fibrillation (AF) is often asymptomatic and thus under-observed. Given the high risks of stroke and heart failure among patients with AF, early prediction and effective management are crucial. Given the prevalence of obstructive sleep apnea among AF patients, electrocardiogram (ECG) analysis from polysomnography (PSG) offers a unique opportunity for early AF prediction. Our aim is to identify individuals at high risk of AF development from singlelead ECGs during standard PSG. METHODS: We analyzed 18,782 singlelead ECG recordings from 13,609 subjects undergoing PSG at the Massachusetts General Hospital sleep laboratory. AF presence was identified using ICD-9/10 codes. The dataset included 15,913 recordings without AF history and 2054 recordings from patients diagnosed with AF between one month to fifteen years post-PSG. Data were partitioned into training, validation, and test cohorts ensuring that individual patients remained exclusive to each cohort. The test set was held out during the training process. We employed two different methods for feature extraction to build a final model for AF prediction: Extraction of hand-crafted ECG features and a deep learning method. For extraction of ECG-hand-crafted features, recordings were split into 30-s windows, and those with a signal quality index (SQI) below 0.95 were discarded. From each remaining window, 150 features were extracted from the time, frequency, time-frequency domains, and phase-space reconstructions of the ECG. A compilation of 12 statistical features summarized these window-specific features per recording, resulting in 1800 features (12 × 150). A pre-trained deep neural network from the PhysioNet Challenge 2021 was updated using transfer learning to discriminate recordings with and without AF. The model processed PSG ECGs in 16-s windows to generate AF probabilities, from which 13 statistical features were extracted. Combining 1800 features from feature extraction with 13 from the deep learning model, we performed a feature selection and subsequently trained a shallow neural network to predict future AF and evaluated its performance on the test cohort. RESULTS: On the test set, our model exhibited sensitivity, specificity, and precision of 0.67, 0.81, and 0.3, respectively, for AF prediction. Survival analysis revealed a hazard ratio of 8.36 (p-value: 1.93 × 10-52) for AF outcomes using the log-rank test. CONCLUSIONS: Our proposed ECG analysis method, utilizing overnight PSG data, shows promise in AF prediction despite modest precision, suggesting false positives. This approach could enable low-cost screening and proactive treatment for high-risk patients. Refinements, including additional physiological parameters, may reduce false positives, enhancing clinical utility and accuracy.
Asunto(s)
Fibrilación Atrial , Electrocardiografía , Polisomnografía , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Electrocardiografía/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Valor Predictivo de las Pruebas , Aprendizaje Profundo , Frecuencia Cardíaca/fisiología , SueñoRESUMEN
AIM: To assess self-reported parasomnias in patients with sleep disorders and explore relationships with psychiatric illness, comorbidities, subjective sleep assessments, and polysomnographic study results. METHODS: Results from intake questionnaires and polysomnographic assessments, collected from 240 sleep centers across 30 US states between 2004 and 2019, were analyzed retrospectively. Of 540,000 total patients, 371,889 who answered parasomnia-specific questions were included. Patients responding "often" or "always" to parasomnia-specific questions were considered "symptom-positive," whereas a "few times" or "never" were considered "symptom-negative" (controls). RESULTS: The study sample was 54.5% male with mean age 54 years (range, 2-107 years). Frequencies for the different parasomnias were 16.0% for any parasomnia, 8.8% for somniloquy, 6.0% for hypnagogic hallucinations, 4.8% for sleep-related eating disorder, 2.1% for sleep paralysis, and 1.7% for somnambulism. Frequent parasomnias were highly associated with diagnosed depression (odds ratio = 2.72). All parasomnias were associated with being younger and female and with symptoms of depression, anxiety, insomnia, restless legs, pain, medical conditions, fatigue, and sleepiness. Associations with objective sleep metrics showed characteristics of consolidated sleep and differentiated weakly between nonrapid eye movement sleep and rapid eye movement sleep parasomnias. Machine learning accurately classified patients with parasomnia versus controls (balanced accuracies between 71% and 79%). Benzodiazepines, antipsychotics, and opioids increased the odds of experiencing parasomnias, while antihistamines and melatonin reduced the odds. Z-drugs were found to increase the likelihood of a sleep-related eating disorder. CONCLUSION: Our findings suggest that parasomnias may be clinically relevant, yet understudied, symptoms of depression and anxiety. Further investigation is needed to quantify the nature of multimorbidity, including causality and implications for diagnosis and treatment.
RESUMEN
Excessive daytime sleepiness (EDS) is a public health issue. However, it remains largely undervalued, scarcely diagnosed, and poorly supported. Variations in the definition of EDS and limitations in clinical assessment lead to difficulties in its epidemiological study, but the relevance of this symptom from a socioeconomic perspective is inarguable. EDS might be a consequence of several behavioural issues leading to insufficient or disrupted sleep, as well as a consequence of sleep disorders including sleep apnoea syndrome, circadian disorders, central hypersomnolence disorders (narcolepsy and idiopathic hypersomnia), other medical or psychiatric conditions, or medications. Furthermore, EDS can have implications for health as it is thought to act as a risk factor for other conditions, such as cardiovascular and neurodegenerative disorders. Because of the heterogeneous causes of EDS and the complexity of its pathophysiology, management will largely depend on the cause, with the final aim of making treatment specific to the individual using precision medicine and personalised medicine.
Asunto(s)
Trastornos de Somnolencia Excesiva , Narcolepsia , Trastornos del Sueño-Vigilia , Causalidad , Trastornos de Somnolencia Excesiva/diagnóstico , Trastornos de Somnolencia Excesiva/epidemiología , Trastornos de Somnolencia Excesiva/etiología , Humanos , Narcolepsia/diagnóstico , Narcolepsia/tratamiento farmacológico , Factores de RiesgoRESUMEN
BACKGROUND: Isolated rapid-eye-movement sleep behavior disorder (iRBD) is in most cases a prodrome of neurodegenerative synucleinopathies, affecting 1% to 2% of middle-aged and older adults; however, accurate ambulatory diagnostic methods are not available. Questionnaires lack specificity in nonclinical populations. Wrist actigraphy can detect characteristic features in individuals with RBD; however, high-frequency actigraphy has been rarely used. OBJECTIVE: The aim was to develop a machine learning classifier using high-frequency (1-second resolution) actigraphy and a short patient survey for detecting iRBD with high accuracy and precision. METHODS: The method involved analysis of home actigraphy data (for seven nights and more) and a nine-item questionnaire (RBD Innsbruck inventory and three synucleinopathy prodromes of subjective hyposmia, constipation, and orthostatic dizziness) in a data set comprising 42 patients with iRBD, 21 sleep clinic patients with other sleep disorders, and 21 community controls. RESULTS: The actigraphy classifier achieved 95.2% (95% confidence interval [CI]: 88.3-98.7) sensitivity and 90.9% (95% CI: 82.1-95.8) precision. The questionnaire classifier achieved 90.6% accuracy and 92.7% precision, exceeding the performance of the Innsbruck RBD Inventory and prodromal questionnaire alone. Concordant predictions between actigraphy and questionnaire reached a specificity and precision of 100% (95% CI: 95.7-100.0) with 88.1% sensitivity (95% CI: 79.2-94.1) and outperformed any combination of actigraphy and a single question on RBD or prodromal symptoms. CONCLUSIONS: Actigraphy detected iRBD with high accuracy in a mixed clinical and community cohort. This cost-effective fully remote procedure can be used to diagnose iRBD in specialty outpatient settings and has potential for large-scale screening of iRBD in the general population. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Persona de Mediana Edad , Humanos , Anciano , Actigrafía/métodos , Trastorno de la Conducta del Sueño REM/diagnóstico , Encuestas y Cuestionarios , SueñoRESUMEN
ADCA-DN and HSN-IE are rare neurodegenerative syndromes caused by dominant mutations in the replication foci targeting sequence (RFTS) of the DNA methyltransferase 1 (DNMT1) gene. Both phenotypes resemble mitochondrial disorders, and mitochondrial dysfunction was first observed in ADCA-DN. To explore mitochondrial involvement, we studied the effects of DNMT1 mutations in fibroblasts from four ADCA-DN and two HSN-IE patients. We documented impaired activity of purified DNMT1 mutant proteins, which in fibroblasts results in increased DNMT1 amount. We demonstrated that DNMT1 is not localized within mitochondria, but it is associated with the mitochondrial outer membrane. Concordantly, mitochondrial DNA failed to show meaningful CpG methylation. Strikingly, we found activated mitobiogenesis and OXPHOS with significant increase of H2O2, sharply contrasting with a reduced ATP content. Metabolomics profiling of mutant cells highlighted purine, arginine/urea cycle and glutamate metabolisms as the most consistently altered pathways, similar to primary mitochondrial diseases. The most severe mutations showed activation of energy shortage AMPK-dependent sensing, leading to mTORC1 inhibition. We propose that DNMT1 RFTS mutations deregulate metabolism lowering ATP levels, as a result of increased purine catabolism and urea cycle pathways. This is associated with a paradoxical mitochondrial hyper-function and increased oxidative stress, possibly resulting in neurodegeneration in non-dividing cells.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Predisposición Genética a la Enfermedad , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Degeneración Nerviosa/genética , Ataxias Espinocerebelosas/genética , Metilación de ADN/genética , Sordera/genética , Sordera/fisiopatología , Femenino , Fibroblastos/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Narcolepsia/genética , Narcolepsia/fisiopatología , Degeneración Nerviosa/fisiopatología , Fosforilación Oxidativa , Fenotipo , Procesamiento Proteico-Postraduccional/genética , Ataxias Espinocerebelosas/fisiopatologíaRESUMEN
Limbic encephalitis with antibodies against adenylate kinase 5 (AK5) has been difficult to characterize because of its rarity. In this study, we identified 10 new cases and reviewed 16 previously reported patients, investigating clinical features, IgG subclasses, human leucocyte antigen and CSF proteomic profiles. Patients with anti-AK5 limbic encephalitis were mostly male (20/26, 76.9%) with a median age of 66 years (range 48-94). The predominant symptom was severe episodic amnesia in all patients, and this was frequently associated with depression (17/25, 68.0%). Weight loss, asthenia and anorexia were also highly characteristic, being present in 11/25 (44.0%) patients. Although epilepsy was always lacking at disease onset, seizures developed later in a subset of patients (4/25, 16.0%). All patients presented CSF abnormalities, such as pleocytosis (18/25, 72.0%), oligoclonal bands (18/25, 72.0%) and increased Tau (11/14, 78.6%). Temporal lobe hyperintensities were almost always present at disease onset (23/26, 88.5%), evolving nearly invariably towards severe atrophy in subsequent MRIs (17/19, 89.5%). This finding was in line with a poor response to immunotherapy, with only 5/25 (20.0%) patients responding. IgG1 was the predominant subclass, being the most frequently detected and the one with the highest titres in nine CSF-serum paired samples. A temporal biopsy from one of our new cases showed massive lymphocytic infiltrates dominated by both CD4+ and CT8+ T cells, intense granzyme B expression and abundant macrophages/microglia. Human leucocyte antigen (HLA) analysis in 11 patients showed a striking association with HLA-B*08:01 [7/11, 63.6%; odds ratio (OR) = 13.4, 95% confidence interval (CI): 3.8-47.4], C*07:01 (8/11, 72.7%; OR = 11.0, 95% CI: 2.9-42.5), DRB1*03:01 (8/11, 72.7%; OR = 14.4, 95% CI: 3.7-55.7), DQB1*02:01 (8/11, 72.7%; OR = 13.5, 95% CI: 3.5-52.0) and DQA1*05:01 (8/11, 72.7%; OR = 14.4, 95% CI: 3.7-55.7) alleles, which formed the extended haplotype B8-C7-DR3-DQ2 in 6/11 (54.5%) patients (OR = 16.5, 95% CI: 4.8-57.1). Finally, we compared the CSF proteomic profile of five anti-AK5 patients with that of 40 control subjects and 10 cases with other more common non-paraneoplastic limbic encephalitis (five with antibodies against leucine-rich glioma inactivated 1 and five against contactin-associated protein-like 2), as well as 10 cases with paraneoplastic neurological syndromes (five with antibodies against Yo and five against Ma2). These comparisons revealed 31 and seven significantly upregulated proteins in anti-AK5 limbic encephalitis, respectively mapping to apoptosis pathways and innate/adaptive immune responses. These findings suggest that the clinical manifestations of anti-AK5 limbic encephalitis result from a distinct T cell-mediated pathogenesis, with major cytotoxicity-induced apoptosis leading to a prompt and aggressive neuronal loss, likely explaining the poor prognosis and response to immunotherapy.
Asunto(s)
Adenilato Quinasa/líquido cefalorraquídeo , Autoanticuerpos/líquido cefalorraquídeo , Encefalitis Límbica/líquido cefalorraquídeo , Encefalitis Límbica/diagnóstico por imagen , Adenilato Quinasa/sangre , Anciano , Anciano de 80 o más Años , Autoanticuerpos/sangre , Femenino , Humanos , Encefalitis Límbica/sangre , Masculino , Persona de Mediana Edad , Proteómica/métodosRESUMEN
Obstructive sleep apnea (OSA), a disease associated with excessive sleepiness and increased cardiovascular risk, affects an estimated 1 billion people worldwide. The present study examined proteomic biomarkers indicative of presence, severity, and treatment response in OSA. Participants (n = 1391) of the Stanford Technology Analytics and Genomics in Sleep study had blood collected and completed an overnight polysomnography for scoring the apnea−hypopnea index (AHI). A highly multiplexed aptamer-based array (SomaScan) was used to quantify 5000 proteins in all plasma samples. Two separate intervention-based cohorts with sleep apnea (n = 41) provided samples pre- and post-continuous/positive airway pressure (CPAP/PAP). Multivariate analyses identified 84 proteins (47 positively, 37 negatively) associated with AHI after correction for multiple testing. Of the top 15 features from a machine learning classifier for AHI ≥ 15 vs. AHI < 15 (Area Under the Curve (AUC) = 0.74), 8 were significant markers of both AHI and OSA from multivariate analyses. Exploration of pre- and post-intervention analysis identified 5 of the 84 proteins to be significantly decreased following CPAP/PAP treatment, with pathways involving endothelial function, blood coagulation, and inflammatory response. The present study identified PAI-1, tPA, and sE-Selectin as key biomarkers and suggests that endothelial dysfunction and increased coagulopathy are important consequences of OSA, which may explain the association with cardiovascular disease and stroke.
Asunto(s)
Proteómica , Apnea Obstructiva del Sueño , Biomarcadores , Presión de las Vías Aéreas Positiva Contínua , Humanos , Polisomnografía , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/terapiaRESUMEN
Many immune diseases occur at different rates among people with schizophrenia compared to the general population. Here, we evaluated whether this phenomenon might be explained by shared genetic risk factors. We used data from large genome-wide association studies to compare the genetic architecture of schizophrenia to 19 immune diseases. First, we evaluated the association with schizophrenia of 581 variants previously reported to be associated with immune diseases at genome-wide significance. We identified five variants with potentially pleiotropic effects. While colocalization analyses were inconclusive, functional characterization of these variants provided the strongest evidence for a model in which genetic variation at rs1734907 modulates risk of schizophrenia and Crohn's disease via altered methylation and expression of EPHB4-a gene whose protein product guides the migration of neuronal axons in the brain and the migration of lymphocytes towards infected cells in the immune system. Next, we investigated genome-wide sharing of common variants between schizophrenia and immune diseases using cross-trait LD score regression. Of the 11 immune diseases with available genome-wide summary statistics, we observed genetic correlation between six immune diseases and schizophrenia: inflammatory bowel disease (rg = 0.12 ± 0.03, P = 2.49 × 10-4), Crohn's disease (rg = 0.097 ± 0.06, P = 3.27 × 10-3), ulcerative colitis (rg = 0.11 ± 0.04, P = 4.05 × 10-3), primary biliary cirrhosis (rg = 0.13 ± 0.05, P = 3.98 × 10-3), psoriasis (rg = 0.18 ± 0.07, P = 7.78 × 10-3) and systemic lupus erythematosus (rg = 0.13 ± 0.05, P = 3.76 × 10-3). With the exception of ulcerative colitis, the degree and direction of these genetic correlations were consistent with the expected phenotypic correlation based on epidemiological data. Our findings suggest shared genetic risk factors contribute to the epidemiological association of certain immune diseases and schizophrenia.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedades del Sistema Inmune/etiología , Enfermedades del Sistema Inmune/genética , Esquizofrenia/etiología , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades del Sistema Inmune/epidemiología , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/epidemiologíaRESUMEN
Type 1 narcolepsy (T1N) is caused by hypocretin/orexin (HCRT) neuronal loss. Association with the HLA DQB1*06:02/DQA1*01:02 (98% vs. 25%) heterodimer (DQ0602), T cell receptors (TCR) and other immune loci suggest autoimmunity but autoantigens are unknown. Onset is seasonal and associated with influenza A, notably pandemic 2009 H1N1 (pH1N1) infection and vaccination (Pandemrix). Peptides derived from HCRT and influenza A, including pH1N1, were screened for DQ0602 binding and presence of cognate DQ0602 tetramer-peptide-specific CD4+ T cells tested in 35 T1N cases and 22 DQ0602 controls. Higher reactivity to influenza pHA273-287 (pH1N1 specific), PR8 (H1N1 pre-2009 and H2N2)-specific NP17-31 and C-amidated but not native version of HCRT54-66 and HCRT86-97 (HCRTNH2) were observed in T1N. Single-cell TCR sequencing revealed sharing of CDR3ß TRBV4-2-CASSQETQGRNYGYTF in HCRTNH2 and pHA273-287-tetramers, suggesting molecular mimicry. This public CDR3ß uses TRBV4-2, a segment modulated by T1N-associated SNP rs1008599, suggesting causality. TCR-α/ß CDR3 motifs of HCRT54-66-NH2 and HCRT86-97-NH2 tetramers were extensively shared: notably public CDR3α, TRAV2-CAVETDSWGKLQF-TRAJ24, that uses TRAJ24, a chain modulated by T1N-associated SNPs rs1154155 and rs1483979. TCR-α/ß CDR3 sequences found in pHA273-287, NP17-31, and HCRTNH2 tetramer-positive CD4+ cells were also retrieved in single INF-γ-secreting CD4+ sorted cells stimulated with Pandemrix, independently confirming these results. Our results provide evidence for autoimmunity and molecular mimicry with flu antigens modulated by genetic components in the pathophysiology of T1N.