Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
2.
Brain ; 145(6): 1939-1948, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773235

RESUMEN

Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with shared features, including early-onset epilepsy, developmental delay, macrocephaly, and corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing arm of the mTORC1 signalling pathway. Due to its large size (3432 amino acids), lack of crystal structure, and absence of functional domains, it is difficult to determine the pathogenicity of SZT2 missense and in-frame deletions, but these variants are increasingly detected and reported by clinical genetic testing in individuals with epilepsy. To exemplify this latter point, here we describe a cohort of 12 individuals with biallelic SZT2 variants and phenotypic overlap with SZT2-related neurodevelopmental disorders. However, the majority of individuals carried one or more SZT2 variants of uncertain significance (VUS), highlighting the need for functional characterization to determine, which, if any, of these VUS were pathogenic. Thus, we developed a novel individualized platform to identify SZT2 loss-of-function variants in the context of mTORC1 signalling and reclassify VUS. Using this platform, we identified a recurrent in-frame deletion (SZT2 p.Val1984del) which was determined to be a loss-of-function variant and therefore likely pathogenic. Haplotype analysis revealed that this single in-frame deletion is a founder variant in those of Ashkenazi Jewish ancestry. Moreover, this approach allowed us to tentatively reclassify all of the VUS in our cohort of 12 individuals, identifying five individuals with biallelic pathogenic or likely pathogenic variants. Clinical features of these five individuals consisted of early-onset seizures (median 24 months), focal seizures, developmental delay and macrocephaly similar to previous reports. However, we also show a widening of the phenotypic spectrum, as none of the five individuals had corpus callosum abnormalities, in contrast to previous reports. Overall, we present a rapid assay to resolve VUS in SZT2, identify a founder variant in individuals of Ashkenazi Jewish ancestry, and demonstrate that corpus callosum abnormalities is not a hallmark feature of this condition. Our approach is widely applicable to other mTORopathies including the most common causes of the focal genetic epilepsies, DEPDC5, TSC1/2, MTOR and NPRL2/3.


Asunto(s)
Epilepsias Parciales , Epilepsia , Megalencefalia , Epilepsia/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Megalencefalia/genética , Proteínas del Tejido Nervioso/genética , Proteínas Supresoras de Tumor/genética
3.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583973

RESUMEN

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Niño , Cricetinae , Cricetulus , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Canales de Potasio KCNQ , Ratones , Mutación Missense , Convulsiones
4.
Am J Hum Genet ; 104(5): 948-956, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982612

RESUMEN

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.


Asunto(s)
Canales de Calcio Tipo N/genética , Calcio/metabolismo , Discinesias/genética , Epilepsia/genética , Mutación , Transmisión Sináptica , Adolescente , Niño , Preescolar , Discinesias/patología , Epilepsia/patología , Femenino , Humanos , Lactante , Pérdida de Heterocigocidad , Masculino , Linaje
5.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185323

RESUMEN

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Estudios de Cohortes , Epilepsia/metabolismo , Femenino , Estudios de Seguimiento , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Adulto Joven
6.
Epilepsia ; 63(7): e68-e73, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35474188

RESUMEN

This study assessed the effectiveness of genetic testing in shortening the time to diagnosis of late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease. Individuals who received epilepsy gene panel testing through Behind the Seizure® , a sponsored genetic testing program (Cohort A), were compared to children outside of the sponsored testing program during the same period (Cohort B). Two cohorts were analyzed: children aged ≥24 to ≤60 months with unprovoked seizure onset at ≥24 months between December 2016 and January 2020 (Cohort 1) and children aged 0 to ≤60 months at time of testing with unprovoked seizure onset at any age between February 2019 and January 2020 (Cohort 2). The diagnostic yield in Cohort 1A (n = 1814) was 8.4% (n = 153). The TPP1 diagnostic yield within Cohort 1A was 2.9-fold higher compared to Cohort 1B (1.0%, n = 18/1814 vs. .35%, n = 8/2303; p = .0157). The average time from first symptom to CLN2 disease diagnosis was significantly shorter than previously reported (9.8 vs. 22.7 months, p < .001). These findings indicate that facilitated access to early epilepsy gene panel testing helps to increase diagnostic yield for CLN2 disease and shortens the time to diagnosis, enabling earlier intervention.


Asunto(s)
Epilepsia , Lipofuscinosis Ceroideas Neuronales , Aminopeptidasas/genética , Niño , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Epilepsia/diagnóstico , Epilepsia/genética , Pruebas Genéticas , Humanos , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/genética , Convulsiones/genética , Serina Proteasas/genética , Tripeptidil Peptidasa 1
7.
Genet Med ; 22(7): 1215-1226, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376980

RESUMEN

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Asunto(s)
Discapacidad Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Transcriptoma/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral
8.
Ann Neurol ; 86(6): 899-912, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600826

RESUMEN

OBJECTIVE: Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS: We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS: Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION: Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019;86:899-912.


Asunto(s)
Variación Genética/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Estructura Secundaria de Proteína , Canales de Potasio Shab/química
9.
Am J Med Genet A ; 182(6): 1460-1465, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32267060

RESUMEN

Congenital disorders of glycosylation (CDG) are metabolic disorders that affect the glycosylation of proteins and lipids. Since glycosylation affects all organs, CDG show a wide spectrum of phenotypes. We present a patient with microcephaly, dysmorphic facies, congenital heart defect, focal epilepsy, infantile spasms, skeletal dysplasia, and a type 1 serum transferrin isoelectrofocusing due to a novel CDG caused by a homozygous variant in the oligosaccharyltransferase complex noncatalytic subunit (OSTC) gene involved in glycosylation and confirmed by serum transferrin electrophoresis.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Epilepsia/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/patología , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Humanos , Lactante , Masculino , Mutación/genética , Fenotipo , Transferrina/genética , Secuenciación del Exoma
10.
Hum Mutat ; 40(11): 2108-2120, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31301155

RESUMEN

The wobble position in the anticodon loop of transfer ribonucleic acid (tRNA) is subject to numerous posttranscriptional modifications. In particular, thiolation of the wobble uridine has been shown to play an important role in codon-anticodon interactions. This modification is catalyzed by a highly conserved CTU1/CTU2 complex, disruption of which has been shown to cause abnormal phenotypes in yeast, worms, and plants. We have previously suggested that a single founder splicing variant in human CTU2 causes a novel multiple congenital anomalies syndrome consisting of dysmorphic facies, renal agenesis, ambiguous genitalia, microcephaly, polydactyly, and lissencephaly (DREAM-PL). In this study, we describe five new patients with DREAM-PL phenotype and whose molecular analysis expands the allelic heterogeneity of the syndrome to five different alleles; four of which predict protein truncation. Functional characterization using patient-derived cells for each of these alleles, as well as the original founder allele; revealed a specific impairment of wobble uridine thiolation in all known thiol-containing tRNAs. Our data establish a recognizable CTU2-linked autosomal recessive syndrome in humans characterized by defective thiolation of the wobble uridine. The potential deleterious consequences for the translational efficiency and fidelity during development as a mechanism for pathogenicity represent an attractive target of future investigations.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Alelos , Predisposición Genética a la Enfermedad , Variación Genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Consanguinidad , Análisis Mutacional de ADN , Facies , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Fenotipo , ARN de Transferencia/química , Radiografía , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad , Síndrome
11.
Am J Hum Genet ; 99(6): 1261-1280, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839871

RESUMEN

Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.


Asunto(s)
Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Epilepsia/genética , Exoma/genética , Ácido Glutámico/metabolismo , Humanos , Discapacidad Intelectual/genética , Modelos Moleculares , Mutación Missense , Neuronas/metabolismo , Unión Proteica/genética , Dominios Proteicos/genética , Transporte de Proteínas , Receptores de N-Metil-D-Aspartato/química , Convulsiones/genética
12.
Epilepsy Behav ; 97: 44-50, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181428

RESUMEN

RATIONALE: Early-life epilepsies (ELEs) include some of the most challenging forms of epilepsy to manage. Given recent diagnostic and therapeutic advances, a contemporary assessment of the immediate short-term outcomes can provide a valuable framework for identifying priorities and benchmarks for evaluating quality improvement efforts. METHODS: Children with newly diagnosed epilepsy and onset <3 years were prospectively recruited through 17 US hospitals, from 2012 to 2015 and followed for 1 year after diagnosis. Short-term outcome included mortality, drug resistance, evolution of nonsyndromic epilepsy to infantile spasms (IS) and from IS to other epilepsies, and developmental decline. Multivariable analyses assessed the risk of each outcome. RESULTS: Seven hundred seventy-five children were recruited, including 408 (53%) boys. Median age at onset was 7.5 months (interquartile range (IQR): 4.2-16.5), and 509 (66%) had onset in the first year of life. Of 22 deaths that occurred within one year of epilepsy diagnosis, 21 were children with epilepsy onset in infancy (<12 months). Of 680 children followed ≥6 months, 239 (35%) developed drug-resistant seizures; 34/227 (15%) infants with nonsyndromic epilepsy developed IS, and 48/210 (23%) initially presenting with IS developed additional seizure types. One hundred of 435 (23%) with initially typical development or only mild/equivocal delays at seizure onset, had clear developmental impairment within one year after initial diagnosis. Each outcome had a different set of predictors; however, younger age and impaired development at seizure onset were broadly indicative of poorer outcomes. Type of epilepsy and early identification of underlying cause were not reliable predictors of these outcomes. CONCLUSION: Early-life epilepsies carry a high risk of poor outcome which is evident shortly after epilepsy diagnosis. Onset in infancy and developmental delay is associated with an especially high risk, regardless of epilepsy type. The likelihood of poor outcomes is worrisome regardless of specific clinical profiles.


Asunto(s)
Discapacidades del Desarrollo/etiología , Espasmos Infantiles , Anticonvulsivantes/uso terapéutico , Preescolar , Resistencia a Medicamentos , Femenino , Humanos , Lactante , Masculino , Análisis Multivariante , Pronóstico , Estudios Prospectivos , Convulsiones/complicaciones , Convulsiones/tratamiento farmacológico , Espasmos Infantiles/complicaciones , Espasmos Infantiles/tratamiento farmacológico
13.
Epilepsia ; 59(3): 573-582, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29336036

RESUMEN

OBJECTIVE: The aim of this study was to investigate periictal central apnea as a seizure semiological feature, its localizing value, and possible relationship with sudden unexpected death in epilepsy (SUDEP) pathomechanisms. METHODS: We prospectively studied polygraphic physiological responses, including inductance plethysmography, peripheral capillary oxygen saturation (SpO2 ), electrocardiography, and video electroencephalography (VEEG) in 473 patients in a multicenter study of SUDEP. Seizures were classified according to the International League Against Epilepsy (ILAE) 2017 seizure classification based on the most prominent clinical signs during VEEG. The putative epileptogenic zone was defined based on clinical history, seizure semiology, neuroimaging, and EEG. RESULTS: Complete datasets were available in 126 patients in 312 seizures. Ictal central apnea (ICA) occurred exclusively in focal epilepsy (51/109 patients [47%] and 103/312 seizures [36.5%]) (P < .001). ICA was the only clinical manifestation in 16/103 (16.5%) seizures, and preceded EEG seizure onset by 8 ± 4.9 s, in 56/103 (54.3%) seizures. ICA ≥60 s was associated with severe hypoxemia (SpO2 <75%). Focal onset impaired awareness (FOIA) motor onset with automatisms and FOA nonmotor onset semiologies were associated with ICA presence (P < .001), ICA duration (P = .002), and moderate/severe hypoxemia (P = .04). Temporal lobe epilepsy was highly associated with ICA in comparison to extratemporal epilepsy (P = .001) and frontal lobe epilepsy (P = .001). Isolated postictal central apnea was not seen; in 3/103 seizures (3%), ICA persisted into the postictal period. SIGNIFICANCE: ICA is a frequent, self-limiting semiological feature of focal epilepsy, often starting before surface EEG onset, and may be the only clinical manifestation of focal seizures. However, prolonged ICA (≥60 s) is associated with severe hypoxemia and may be a potential SUDEP biomarker. ICA is more frequently seen in temporal than extratemporal seizures, and in typical temporal seizure semiologies. ICA rarely persists after seizure end. ICA agnosia is typical, and thus it may remain unrecognized without polygraphic measurements that include breathing parameters.


Asunto(s)
Apnea/diagnóstico , Apnea/epidemiología , Convulsiones/diagnóstico , Convulsiones/epidemiología , Apnea/fisiopatología , Muerte Súbita/prevención & control , Electroencefalografía/tendencias , Femenino , Humanos , Incidencia , Masculino , Estudios Prospectivos , Convulsiones/fisiopatología
14.
Epilepsia ; 59(2): 389-402, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29315614

RESUMEN

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Asunto(s)
Epilepsias Mioclónicas/fisiopatología , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Adolescente , Adulto , Anticonvulsivantes/uso terapéutico , Ataxia/complicaciones , Ataxia/genética , Ataxia/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsias Parciales/complicaciones , Epilepsias Parciales/tratamiento farmacológico , Epilepsias Parciales/genética , Epilepsias Parciales/fisiopatología , Epilepsia Generalizada/complicaciones , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatología , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/complicaciones , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Fenotipo , Resultado del Tratamiento , Ácido Valproico/uso terapéutico , Adulto Joven
15.
J Med Genet ; 54(7): 460-470, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28377535

RESUMEN

BACKGROUND: We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. METHODS: Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. RESULTS: Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. CONCLUSIONS: In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.


Asunto(s)
Encefalopatías/genética , Mutación/genética , Receptores de N-Metil-D-Aspartato/genética , Encefalopatías/tratamiento farmacológico , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Memantina/uso terapéutico , Terapia Molecular Dirigida , Neuroimagen , Fenotipo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
16.
J Pediatr ; 184: 172-177.e1, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28410084

RESUMEN

OBJECTIVES: To determine whether certain characteristic electroencephalography (EEG) features are indicative of a genetic cause in early-life epilepsy. STUDY DESIGN: We enrolled a total of 100 patients with infantile-onset (<3 years) epilepsy due to known genetic cause (n = 50) and nongenetic cause (acquired, structural, or unknown, n = 50). The genetic group was classified into synaptopathies, channelopathies, mTOR (mammalian target of rapamycin)-opathies, and chromosomal abnormalities. The nongenetic group included epilepsy of unknown cause and structural abnormalities such as brain tumor, focal cortical dysplasia and encephalomalacia. The clinical features, magnetic resonance imaging, and video EEG obtained before 3 years of age and again at follow-up were reviewed. Specifically, the background rhythms and patterns of interictal epileptiform discharges were analyzed to define the EEG characteristics. RESULTS: The genetic group was more likely to have seizure recurrence beyond infancy and significant developmental delay (P <.01). The genetic and nongenetic groups showed different EEG patterns in the initial EEGs that persisted in follow-up EEGs. Diffuse slowing with pleomorphic focal/multifocal epileptiform discharges were present more often in the genetic (86%) compared with the nongenetic group (20%) in the initial EEGs (P <.01). The last available follow-up EEG features were similar (81% in genetic versus 17% in nongenetic) to the EEG performed prior to 3 years of age. CONCLUSIONS: Our findings suggest a simple guide for genetic screening in children with early-onset epilepsy. Genetic testing may be indicated and useful in infants with delayed development, no obvious cause, and significant EEG background slowing with pleomorphic focal or multifocal epileptiform discharges.


Asunto(s)
Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Mutación , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos
17.
Ann Neurol ; 79(3): 475-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26704170

RESUMEN

OBJECTIVE: Infantile spasms are seizures associated with a severe epileptic encephalopathy presenting in the first 2 years of life, and optimal treatment continues to be debated. This study evaluates early and sustained response to initial treatments and addresses both clinical remission and electrographic resolution of hypsarrhythmia. Secondarily, it assesses whether response to treatment differs by etiology or developmental status. METHODS: The National Infantile Spasms Consortium established a multicenter, prospective database enrolling infants with new diagnosis of infantile spasms. Children were considered responders if there was clinical remission and resolution of hypsarrhythmia that was sustained at 3 months after first treatment initiation. Standard treatments of adrenocorticotropic hormone (ACTH), oral corticosteroids, and vigabatrin were considered individually, and all other nonstandard therapies were analyzed collectively. Developmental status and etiology were assessed. We compared response rates by treatment group using chi-square tests and multivariate logistic regression models. RESULTS: Two hundred thirty infants were enrolled from 22 centers. Overall, 46% of children receiving standard therapy responded, compared to only 9% who responded to nonstandard therapy (p < 0.001). Fifty-five percent of infants receiving ACTH as initial treatment responded, compared to 39% for oral corticosteroids, 36% for vigabatrin, and 9% for other (p < 0.001). Neither etiology nor development significantly modified the response pattern by treatment group. INTERPRETATION: Response rate varies by treatment choice. Standard therapies should be considered as initial treatment for infantile spasms, including those with impaired development or known structural or genetic/metabolic etiology. ACTH appeared to be more effective than other standard therapies.


Asunto(s)
Corticoesteroides/administración & dosificación , Hormona Adrenocorticotrópica/uso terapéutico , Anticonvulsivantes/administración & dosificación , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/epidemiología , Vigabatrin/uso terapéutico , Administración Oral , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Prevalencia , Estudios Prospectivos , Factores de Riesgo , Espasmos Infantiles/diagnóstico , Estados Unidos/epidemiología
18.
Epilepsia ; 58(1): e10-e15, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861786

RESUMEN

Variants in KCNQ2 encoding for Kv 7.2 neuronal K+ channel subunits lead to a spectrum of neonatal-onset epilepsies, ranging from self-limiting forms to severe epileptic encephalopathy. Most KCNQ2 pathogenic variants cause loss-of-function, whereas few increase channel activity (gain-of-function). We herein provide evidence for a new phenotypic and functional profile in KCNQ2-related epilepsy: infantile spasms without prior neonatal seizures associated with a gain-of-function gene variant. With use of an international registry, we identified four unrelated patients with the same de novo heterozygous KCNQ2 c.593G>A, p.Arg198Gln (R198Q) variant. All were born at term and discharged home without seizures or concern of encephalopathy, but developed infantile spasms with hypsarrhythmia (or modified hypsarrhythmia) between the ages of 4 and 6 months. At last follow-up (ages 3-11 years), all patients were seizure-free and had severe developmental delay. In vitro experiments showed that Kv7.2 R198Q subunits shifted current activation gating to hyperpolarized potentials, indicative of gain-of-function; in neurons, Kv 7.2 and Kv 7.2 R198Q subunits similarly populated the axon initial segment, suggesting that gating changes rather than altered subcellular distribution contribute to disease molecular pathogenesis. We conclude that KCNQ2 R198Q is a model for a new subclass of KCNQ2 variants causing infantile spasms and encephalopathy, without preceding neonatal seizures. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Asunto(s)
Encefalopatías/genética , Canal de Potasio KCNQ2/genética , Mutación/genética , Espasmos Infantiles/genética , Animales , Arginina/genética , Células CHO , Células Cultivadas , Niño , Preescolar , Cricetulus , Glutamina/genética , Hipocampo/citología , Humanos , Lactante , Estudios Longitudinales , Potenciales de la Membrana/genética , Modelos Moleculares , Neuronas/fisiología , Ratas , Transfección
19.
Epilepsia ; 57(11): 1834-1842, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27615012

RESUMEN

OBJECTIVE: Infantile spasms (IS) represent a severe epileptic encephalopathy presenting in the first 2 years of life. Recommended first-line therapies (hormonal therapy or vigabatrin) often fail. We evaluated response to second treatment for IS in children in whom the initial therapy failed to produce both clinical remission and electrographic resolution of hypsarhythmia and whether time to treatment was related to outcome. METHODS: The National Infantile Spasms Consortium established a multicenter, prospective database enrolling infants with new diagnosis of IS. Children were considered nonresponders to first treatment if there was no clinical remission or persistence of hypsarhythmia. Treatment was evaluated as hormonal therapy (adrenocorticotropic hormone [ACTH] or oral corticosteroids), vigabatrin, or "other." Standard treatments (hormonal and vigabatrin) were compared to all other nonstandard treatments. We compared response rates using chi-square tests and multivariable logistic regression models. RESULTS: One hundred eighteen infants were included from 19 centers. Overall response rate to a second treatment was 37% (n = 44). Children who received standard medications with differing mechanisms for first and second treatment had higher response rates than other sequences (27/49 [55%] vs. 17/69 [25%], p < 0.001). Children receiving first treatment within 4 weeks of IS onset had a higher response rate to second treatment than those initially treated later (36/82 [44%] vs. 8/34 [24%], p = 0.040). SIGNIFICANCE: Greater than one third of children with IS will respond to a second medication. Choosing a standard medication (ACTH, oral corticosteroids, or vigabatrin) that has a different mechanism of action appears to be more effective. Rapid initial treatment increases the likelihood of response to the second treatment.


Asunto(s)
Hormona Adrenocorticotrópica/uso terapéutico , Anticonvulsivantes/uso terapéutico , Espasmos Infantiles/tratamiento farmacológico , Insuficiencia del Tratamiento , Vigabatrin/uso terapéutico , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino
20.
Epilepsia ; 56(1): 77-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385396

RESUMEN

OBJECTIVE: Hypsarrhythmia is the classic interictal electroencephalographic pattern associated with infantile spasms, and characterized by high voltage, disorganization, and multifocal independent epileptiform discharges. Given this seemingly simple definition, one might expect excellent interrater reliability (IRR) in the identification of this pattern. Alternatively, it may be argued that assessments of voltage and disorganization are fairly subjective, and thus quite challenging in borderline cases. We sought to test the IRR of hypsarrhythmia assessment in a systematic fashion. METHODS: Six blinded pediatric electroencephalographers from four centers reviewed 22 electroencephalography (EEG) samples from patients with infantile spasms. Each sample was 5 min in duration and included only wakefulness. Raters determined if each EEG was abnormal and if hypsarrhythmia was present/absent, and characterized relevant features: voltage, organization, epileptiform discharges, slowing, interictal attenuations, symmetry, and synchrony. In addition, raters indicated their level of confidence for each assessment. Multirater kappa statistics (κ) were calculated for the assessment of hypsarrhythmia and each feature. RESULTS: Although IRR was favorable in determining whether a study was normal or abnormal (κ=0.89), reliability was unfavorable for assessment of hypsarrhythmia (κ=0.40), modified hypsarrhythmia (κ=0.47), high voltage (κ=0.37), disorganization (κ=0.22), multifocal epileptiform discharges (κ=0.68), interictal voltage attenuations (κ=0.21), slowing (κ=0.20), asymmetry (κ=0.26), and asynchrony (κ=0.08). Despite generally unsatisfactory interrater agreement, raters consistently reported high confidence in assessments. SIGNIFICANCE: This study contradicts the view that hypsarrhythmia assessment is straightforward. Even small variability in the identification of hypsarrhythmia has potentially deleterious consequences for clinical care, as its presence or absence impacts decisions to pursue high-risk and high-cost therapies. These inconsistencies may similarly confound studies in which abolition of hypsarrhythmia is an outcome measure. There is a great need for practical, reliable, and unbiased measures of hypsarrhythmia.


Asunto(s)
Electroencefalografía/estadística & datos numéricos , Neurología/normas , Espasmos Infantiles/diagnóstico , Preescolar , Ensayos Clínicos como Asunto/normas , Humanos , Lactante , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA