RESUMEN
The fetal liver is a hematopoietic organ, hosting a diverse and evolving progenitor population. While human liver organoids derived from pluripotent stem cells (PSCs) mimic aspects of embryonic and fetal development, they typically lack the complex hematopoietic niche and the interaction between hepatic and hematopoietic development. We describe the generation of human Fetal Liver-like Organoids (FLOs), that model human hepato-hematopoietic interactions previously characterized in mouse models. Developing FLOs first integrate a yolk sac-like hemogenic endothelium into hepatic endoderm and mesoderm specification. As the hepatic and hematopoietic lineages differentiate, the FLO culture model establishes an autonomous niche capable of driving subsequent progenitor differentiation without exogenous factors. Consistent with yolk sac-derived waves, hematopoietic progenitor cells (HPCs) within FLOs exhibit multipotency with a preference for myeloid lineage commitment, while retaining fetal B and T cell differentiation potential. We reconstruct in FLOs the embryonic monocyte-to-macrophage and granulocyte immune trajectories within the FLO microenvironment and assess their functional responses in the liver niche. In vivo, FLOs demonstrate a liver engraftment bias of hematopoietic cells, recapitulating a key phenomenon of human hematopoietic ontogeny. Our findings highlight the intrinsic capacity of liver organoids to support hematopoietic development, establishing FLOs as a platform for modeling and manipulating human blood-liver niche interactions during critical stages of development and disease.
RESUMEN
Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Contusiones , Humanos , Enfermedades Neuroinflamatorias , Inflamación/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Contusiones/metabolismo , Mitocondrias/metabolismo , Microglía/metabolismo , Astrocitos/metabolismoRESUMEN
Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.
Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inhibidores Enzimáticos/administración & dosificación , Indoles/administración & dosificación , Maleimidas/administración & dosificación , Células Madre Mesenquimatosas/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Trasplante Heterólogo/métodos , Animales , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/inmunología , Inhibidores Enzimáticos/sangre , Femenino , Humanos , Inmunidad/efectos de los fármacos , Indoles/sangre , Maleimidas/sangre , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Distribución Tisular , Resultado del TratamientoRESUMEN
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Neumonía Viral/terapia , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , COVID-19 , Infecciones por Coronavirus/virología , Enfermedad Injerto contra Huésped/terapia , Humanos , Ingeniería Metabólica/métodos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Receptores de TrasplantesRESUMEN
Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.
Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Preparaciones Farmacéuticas , Farmacocinética , Animales , Cisplatino/farmacocinética , Diseño de Fármacos , Humanos , Técnicas In Vitro , Hígado/metabolismo , Microfluídica/instrumentación , Modelos Biológicos , Nicotina/farmacocinética , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The inaccessibility of living bone marrow (BM) hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human BM-on-a-chip (BM chip) supports the differentiation and maturation of multiple blood cell lineages over 4 weeks while improving CD34+ cell maintenance, and that it recapitulates aspects of BM injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation, as well as BM recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34+ cells and BM-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels. We also show that BM chips containing cells from patients with the rare genetic disorder Shwachman-Diamond syndrome reproduced key haematopoietic defects and led to the discovery of a neutrophil maturation abnormality. As an in vitro model of haematopoietic dysfunction, the BM chip may serve as a human-specific alternative to animal testing for the study of BM pathophysiology.
Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea/patología , Hematopoyesis , Microfluídica/métodos , Animales , Antígenos CD34 , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Trasplante de Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Dispositivos Laboratorio en un Chip , Células Madre Mesenquimatosas , Microfluídica/instrumentaciónRESUMEN
Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Robótica/métodos , Barrera Hematoencefálica , Encéfalo , Calibración , Técnicas de Cultivo de Célula/instrumentación , Diseño de Equipo , Corazón , Humanos , Intestinos , Riñón , Hígado , Pulmón , Robótica/instrumentación , PielRESUMEN
Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (â¼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa.