RESUMEN
Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.
Asunto(s)
Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Humanos , Estudios de Cohortes , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo/métodos , Genoma Humano , Control de Calidad , Aprendizaje Automático , Secuenciación Completa del Genoma/normas , Secuenciación Completa del Genoma/métodosRESUMEN
Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-Oâ¢). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O⢠radicals. The specificity of CH3C(O)O⢠generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O⢠in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.
RESUMEN
Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (â¼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.
Asunto(s)
Estudio de Asociación del Genoma Completo , Medicina de Precisión , Pueblo Asiatico , Humanos , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del GenomaRESUMEN
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.
Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Proteínas de la Nucleocápside , Ribonucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Phlebovirus/fisiología , Interacciones Huésped-PatógenoRESUMEN
There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Chlorocebus aethiops , SARS-CoV-2/metabolismo , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Células Vero , Replicación Viral , ARN ViralRESUMEN
Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.
Asunto(s)
Estudio de Asociación del Genoma Completo , Medicina de Precisión , Plaquetas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Estados UnidosRESUMEN
Minimal residual disease (MRD) based risk stratification criteria for specific genetic subtypes remained unclear in childhood acute lymphoblastic leukemia (ALL). Among 723 children with newly diagnosed ALL treated with the Chinese Children Leukemia Group CCLG-2008 protocol, MRD was assessed at time point 1 (TP1, at the end of induction) and TP2 (before consolidation treatment) and the MRD levels significantly differed in patients with different fusion genes or immunophenotypes (P all < 0.001). Moreover, the prognostic impact of MRD varied by distinct molecular subtypes. We stratified patients in each molecular subtype into two MRD groups based on the results. For patients carrying BCR::ABL1 or KMT2A rearrangements, we classified patients with MRD < 10-2 at both TP1 and TP2 as the low MRD group and the others as the high MRD group. ETV6::RUNX1+ patients with TP1 MRD < 10-3 and TP2 MRD-negative were classified as the low MRD group and the others as the high MRD group. For T-ALL, We defined children with TP1 MRD ≥ 10-3 as the high MRD group and the others as the low MRD group. The 10-year relapse-free survival of low MRD group was significantly better than that of high MRD group. We verified the prognostic impact of the subtype-specific MRD-based stratification in patients treated with the BCH-ALL2003 protocol. In conclusion, the subtype-specific MRD risk stratification may contribute to the precise treatment of childhood ALL.
Asunto(s)
Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Masculino , Femenino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Preescolar , Adolescente , Lactante , Pronóstico , Proteínas de Fusión Oncogénica/genética , Supervivencia sin EnfermedadRESUMEN
The role of the aryl hydrocarbon receptor (AhR) in regulating oxidative stress and immune responses has been increasingly recognized. However, its involvement in depression and the underlying mechanisms remain poorly understood. This study aimed to investigate the effect of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous AhR ligand, on a lipopolysaccharide (LPS)-induced depression model and the underlying mechanism. After being treated with FICZ (50 mg/kg), male C57BL/6J mice received intraperitoneal injection of LPS and underwent behavioral tests 24 h later. The levels of inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured in the hippocampus and serum using enzyme-linked immunosorbent assay (ELISA). The expression levels of CYP1A1, AhR and NLRP3 were analyzed using qPCR and Western blot. The results showed that, compared with control group, LPS alone significantly down-regulated the expression levels of CYP1A1 mRNA and AhR protein in the hippocampus of mice, reduced glucose preference, prolonged immobility time in forced swimming test, increased IL-6 and IL-1ß levels in the hippocampus, increased serum IL-1ß level, and up-regulated NLRP3 mRNA and protein expression levels in mouse hippocampus, while FICZ significantly reversed the aforementioned effects of LPS. These findings suggest that AhR activation attenuates the inflammatory response associated with depression and modulates the expression of NLRP3. The present study provides novel insights into the role of AhR in the development of depression, and presents AhR as a potential therapeutic target for the treatment of depression.
Asunto(s)
Carbazoles , Citocromo P-450 CYP1A1 , Depresión , Hipocampo , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Hidrocarburo de Aril , Animales , Masculino , Ratones , Conducta Animal , Carbazoles/farmacología , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocinas/metabolismo , Depresión/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.
Asunto(s)
Estudio de Asociación del Genoma Completo , Síndrome de QT Prolongado , Electrocardiografía , Heterocigoto , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Herencia Multifactorial , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Numerous studies have found that inhibiting the expression of NLRP3 inflammasome can significantly improve depressive-like behaviors in mice, but the research on its effect on cognitive decline in depression and its mechanism is still lacking. This study aimed to elucidate the role of NLRP3 inflammasome in cognitive decline in depression and explore the common neuro-immunological mechanisms of depression and Alzheimer's disease (AD). METHODS: Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) for 5 weeks, treatment group was administered with the NLRP3 inhibitor MCC950 (10 mg/kg, i.p.), fluoxetine served as positive control. Then, the mice were assessed for cognitive behaviors and depression-like behaviors, and changes of microglia and neurons in hippocampus and levels of Aß metabolic pathway and tau protein were measured. To explore the mechanism of NLRP3 activation on neurons, we performed in vitro studies using BV2 microglia and mouse primary neurons. Furthermore, we focused on the role of NLRP3 inflammasome in the function of neurons and the expression of AD pathological indicators. RESULTS: CUMS induced depressive-like behaviors and cognitive decline in mice, which could be reversed by inhibiting NLRP3 inflammasome. MCC950, a specific NLRP3 inhibitor, alleviated CUMS-induced neuron injury and AD-like pathological changes, including the abnormal expression of Aß metabolic pathway and the hyper-phosphorylation of tau protein. LPS (1 µg/mL) + ATP (1 mM) treatment activated the expression of NLRP3 inflammasome and IL-1ß in vitro. In vitro experiment also proved that inhibiting the expression of NLRP3 inflammasome in microglia can restore the Aß metabolic pathway to normal, decrease neuronal tau protein phosphorylation and protect neurons. CONCLUSIONS: Inhibition of NLRP3 inflammasome effectively alleviated CUMS-induced depressive-like behaviors and cognitive decline in mice, and inhibited the activation of AD physiological indicators.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Masculino , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas tau , Ratones Endogámicos C57BL , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiologíaRESUMEN
Autophagy is emerging as a critical player in host defense against diverse infections, in addition to its conserved function to maintain cellular homeostasis. Strikingly, some pathogens have evolved strategies to evade, subvert or exploit different steps of the autophagy pathway for their lifecycles. Here, we present a new viral mechanism of manipulating autophagy for its own benefit with severe fever with thrombocytopenia syndrome bunyavirus (SFTSV, an emerging high-pathogenic virus) as a model. SFTSV infection triggers autophagy, leading to complete autophagic flux. Mechanistically, we show that the nonstructural protein of SFTSV (NSs) interacts with mTOR, the pivotal regulator of autophagy, by targeting its kinase domain and captures mTOR into viral inclusion bodies (IBs) induced by NSs itself. Furthermore, NSsimpairs mTOR-mediated phosphorylation of unc-51-like kinase 1 (ULK1) at Ser757, disrupting the inhibitory effect of mTOR on ULK1 activity and thus contributing to autophagy induction. Pharmacologic treatment and Beclin-1 knockout experimental results establish that, in turn, autophagy enhances SFTSV infection and propagation. Moreover, the minigenome reporter system reveals that SFTSV ribonucleoprotein (the transcription and replication machinery) activity can be bolstered by autophagy. Additionally, we found that the NSs proteins of SFTSV-related bunyaviruses have a conserved function of targeting mTOR. Taken together, we unravel a viral strategy of inducing pro-viral autophagy by interacting with mTOR, sequestering mTOR into IBs and hence provoking the downstream ULK1 pathway, which presents a new paradigm for viral manipulation of autophagy and may help inform future development of specific antiviral therapies against SFTSV and related pathogens.
Asunto(s)
Cuerpos de Inclusión , Phlebovirus , Humanos , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Cuerpos de Inclusión/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Phlebovirus/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas no Estructurales Virales/metabolismoRESUMEN
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented threat to human health since late 2019. Notably, the progression of the disease is associated with impaired antiviral interferon (IFN) responses. Although multiple viral proteins were identified as potential IFN antagonists, the underlying molecular mechanisms remain to be fully elucidated. In this study, we firstly demonstrate that SARS-CoV-2 NSP13 protein robustly antagonizes IFN response induced by the constitutively active form of transcription factor IRF3 (IRF3/5D). This induction of IFN response by IRF3/5D is independent of the upstream kinase, TBK1, a previously reported NSP13 target, thus indicating that NSP13 can act at the level of IRF3 to antagonize IFN production. Consistently, NSP13 exhibits a specific, TBK1-independent interaction with IRF3, which, moreover, is much stronger than that of NSP13 with TBK1. Furthermore, the NSP13-IRF3 interaction was shown to occur between the NSP13 1B domain and IRF3 IRF association domain (IAD). In agreement with the strong targeting of IRF3 by NSP13, we then found that NSP13 blocks IRF3-directed signal transduction and antiviral gene expression, counteracting IRF3-driven anti-SARS-CoV-2 activity. These data suggest that IRF3 is likely to be a major target of NSP13 in antagonizing antiviral IFN responses and provide new insights into the SARS-CoV-2-host interactions that lead to viral immune evasion.
Asunto(s)
COVID-19 , Factor 3 Regulador del Interferón , Proteínas no Estructurales Virales , Humanos , COVID-19/inmunología , Evasión Inmune , Factor 3 Regulador del Interferón/genética , Interferones , SARS-CoV-2 , Proteínas no Estructurales Virales/genéticaRESUMEN
Classical swine fever virus (CSFV) infection leading to CSF outbreaks is among the most devastating swine diseases in the pig industry. Porcine circovirus type 2 (PCV2) infection, resulting in porcine circovirus-associated disease (PCVAD), is also a highly contagious disease affecting pig health worldwide. To prevent and control disease occurrence, multiple-vaccine immunization is necessary in contaminated areas or countries. In this study, a novel CSFV-PCV2 bivalent vaccine was constructed and demonstrated to be capable of eliciting humoral and cellular immune responses against CSFV and PCV2, respectively. Moreover, a CSFV-PCV2 dual-challenge trial was conducted on specific-pathogen-free (SPF) pigs to evaluate vaccine efficacy. All of the vaccinated pigs survived and showed no clinical signs of infection throughout the experimental period. In contrast, placebo-vaccinated pigs exhibited severe clinical signs of infection and steeply increased viremia levels of CSFV and PCV2 after virus challenge. Additionally, neither clinical signs nor viral detections were noted in the sentinel pigs when cohabitated with vaccinated-challenged pigs at three days post-inoculation of CSFV, indicating that the CSFV-PCV2 bivalent vaccine completely prevents horizontal transmission of CSFV. Furthermore, conventional pigs were utilized to evaluate the application of the CSFV-PCV2 bivalent vaccine in field farms. An adequate CSFV antibody response and a significant decrease in PCV2 viral load in the peripheral lymph nodes were observed in immunized conventional pigs, suggesting its potential for clinical application. Overall, this study demonstrated that the CSFV-PCV2 bivalent vaccine effectively elicited protective immune responses and the ability to prevent horizontal transmission, which could be a prospective strategy for controlling both CSF and PCVAD in commercial herds.
Asunto(s)
Circovirus , Virus de la Fiebre Porcina Clásica , Animales , Porcinos , Brotes de Enfermedades , Vacunación/veterinaria , Vacunas CombinadasRESUMEN
OBJECTIVES: The current research on single-nucleotide polymorphism (SNP) mutation sites at different positions of the FAM83H gene and their phenotypic changes leading to amelogenesis imperfecta (AI) is inconsistent. We identified a previously reported heterozygous nonsense mutation c.1192C>T (p.Q398*) in the FAM83H gene and conducted a comprehensive analysis of the dental ultrastructure and chemical composition changes induced by this mutation. Additionally, we predicted the protein feature affected by this mutation site. The aim was to further deepen our understanding of the diversity of AI caused by different mutation sites in the FAM83H gene. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the mutation sites. Physical features of the patient's teeth were investigated using various methods including cone beam computer tomography (CBCT), scanning electron microscopy (SEM), contact profilometry (roughness measurement), and a nanomechanical tester (nanoindentation measurement). The protein features of wild-type and mutant FAM83H were predicted using bioinformatics methods. RESULTS: One previously discovered FAM83H heterozygous nonsense mutation c.1192C>T (p.Q398*) was detected in the patient. SEM revealed inconsistent dentinal tubules, and EDS showed that calcium and phosphorus were lower in the patient's dentin but higher in the enamel compared to the control tooth. Roughness measurements showed that AI patients' teeth had rougher occlusal surfaces than those of the control tooth. Nanoindentation measurements showed that the enamel and dentin hardness values of the AI patients' teeth were both significantly reduced compared to those of the control tooth. Compared to the wild-type FAM83H protein, the mutant FAM83H protein shows alterations in stability, hydrophobicity, secondary structure, and tertiary structure. These changes could underlie functional differences and AI phenotype variations caused by this mutation site. CONCLUSIONS: This study expands the understanding of the effects of FAM83H mutations on tooth structure. CLINICAL RELEVANCE: Our study enhances our understanding of the genetic basis of AI and may contribute to improved diagnostics and personalized treatment strategies for patients with FAM83H-related AI.
Asunto(s)
Amelogénesis Imperfecta , Humanos , Amelogénesis Imperfecta/genética , Codón sin Sentido/genética , Codón sin Sentido/análisis , Esmalte Dental/química , Proteínas/análisis , Proteínas/genética , MutaciónRESUMEN
BACKGROUND: Although new approaches for data collection, such as mobile technology and teleresearch, have demonstrated new opportunities for the conduct of more timely and less costly surveys in community-based studies, literature on the feasibility of conducing cardiovascular disease research using mobile health (mHealth) platforms among middle-aged and older African Americans has been limited. OBJECTIVE: The purpose of this study was to contribute to the knowledge regarding the penetrance of internet and mobile technologies, such as cellphones or smartphones in existing large cohort studies of cardiovascular disease. METHODS: A digital connectedness survey was conducted in the Jackson Heart Study (JHS), a Mississippi-based African American cohort study, as part of the annual follow-up calls with participants from July 2017 to February 2019. RESULTS: Of the 4024 participants contacted, 2564 (63.7%) completed the survey. Among survey respondents, 2262 (88.2%) reported use of internet or cellphone, and 1593 (62.1%) had a smartphone. Compared to nonusers (n=302), internet or cellphone users (n=2262) were younger (mean age 80.1, SD 8.0 vs 68.2, SD 11.3 years), more likely to be affluent (n=778, 40.1% vs n=39, 15.4%), and had greater than high school education (n=1636, 72.5% vs n=85, 28.1%). Internet or cellphone users were less likely to have cardiovascular disease history compared to nonusers (136/2262, 6.6% vs 41/302, 15.8%). The prevalence of current smoking and average BMI were similar between internet or cellphone users and nonusers. Among internet or cellphone users, 1316 (58.3%) reported use of email, 504 (22.3%) reported use of apps to track or manage health, and 1269 (56.1%) expressed interest in using JHS-developed apps. CONCLUSIONS: Our findings suggest that it is feasible to use mHealth technologies to collect survey data among African Americans already enrolled in a longitudinal study. Our findings also highlight the need for more efforts to reduce the age and education divide in access and use of internet and smartphones for tracking health and research in African American communities.
Asunto(s)
Enfermedades Cardiovasculares , Teléfono Celular , Persona de Mediana Edad , Humanos , Anciano , Anciano de 80 o más Años , Estudios Transversales , Estudios Longitudinales , Enfermedades Cardiovasculares/epidemiología , Estudios de CohortesRESUMEN
IMPORTANCE: Psychometric examinations for patients with stroke remain insufficient. The Center for Epidemiologic Studies Depression Scale (CES-D), Beck Depression Inventory-II (BDI-II), and Geriatric Depression Scale (GDS) are promising outcome measures. OBJECTIVE: To examine and compare the reliability and validity of three depression measures in a sample of patients with stroke. DESIGN: Repeated-measures design. SETTING: A hospital in southern Taiwan. PARTICIPANTS: Fifty-nine outpatients, who completed three depression measures. OUTCOMES AND MEASURES: Cronbach's α and intraclass correlation coefficients (ICCs) were used to examine the internal consistency and test-retest reliability, respectively, of the three measures. An independent-samples t test was conducted to compare two groups of patients with different levels of disability to investigate discriminative validity. Pearson's rs were calculated among the three measures to examine concurrent validity. RESULTS: The three measures had good internal consistency (α = .85-.92) and sufficient test-retest reliability (ICC = .84-.91). The minimal detectable change (percentage of minimal detectable change) was 10.6 (63.3%), 13.5 (98.3%), and 5.8 (49.9%) for the CES-D, BDI-II, and GDS, respectively. There was a statistically significant difference between the two groups in CES-D score (p = .032) and no significant differences on the other two measures (p = .095-.187). The correlations among the three measures ranged from .79 to .89. CONCLUSION AND RELEVANCE: All three depression measures had sound internal consistency, test-retest reliability, and concurrent validity in patients with stroke. What This Article Adds: Of the three measures, the CES-D had better discriminative validity, and the GDS demonstrated greater reliability and smaller random measurement error in patients with stroke.
Asunto(s)
Depresión , Accidente Cerebrovascular , Anciano , Depresión/diagnóstico , Humanos , Psicometría , Reproducibilidad de los Resultados , Accidente Cerebrovascular/complicaciones , Encuestas y Cuestionarios , TaiwánRESUMEN
The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I protein (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are cytosolic pattern recognition receptors that recognize specific viral RNA products and initiate antiviral innate immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic member of the Bunyavirales RIG-I, but not MDA5, has been suggested to sense some bunyavirus infections; however, the roles of RLRs in anti-SFTSV immune responses remain unclear. Here, we show that SFTSV infection induces an antiviral response accompanied by significant induction of antiviral and inflammatory cytokines and that RIG-I plays a main role in this induction by recognizing viral 5'-triphosphorylated RNAs and by signaling via the adaptor mitochondrial antiviral signaling protein. Moreover, MDA5 may also sense SFTSV infection and contribute to IFN induction, but to a lesser extent. We further demonstrate that the RLR-mediated anti-SFTSV signaling can be antagonized by SFTSV nonstructural protein (NSs) at the level of RIG-I activation. Protein interaction and MS-based analyses revealed that NSs interacts with the host protein tripartite motif-containing 25 (TRIM25), a critical RIG-I-activating ubiquitin E3 ligase, but not with RIG-I or Riplet, another E3 ligase required for RIG-I ubiquitination. NSs specifically trapped TRIM25 into viral inclusion bodies and inhibited TRIM25-mediated RIG-I-Lys-63-linked ubiquitination/activation, contributing to suppression of RLR-mediated antiviral signaling at its initial stage. These results provide insights into immune responses to SFTSV infection and clarify a mechanism of the viral immune evasion, which may help inform the development of antiviral therapeutics.
Asunto(s)
Proteína 58 DEAD Box/inmunología , Evasión Inmune , Helicasa Inducida por Interferón IFIH1/inmunología , Phlebovirus/inmunología , Síndrome de Trombocitopenia Febril Grave/inmunología , Factores de Transcripción/inmunología , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación/inmunología , Células A549 , Proteína 58 DEAD Box/genética , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Phlebovirus/genética , Receptores Inmunológicos , Síndrome de Trombocitopenia Febril Grave/genética , Síndrome de Trombocitopenia Febril Grave/patología , Transducción de Señal/genética , Transducción de Señal/inmunología , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunologíaRESUMEN
BACKGROUND: Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease and type 2 diabetes. Although the development of MetS is attributed to known lifestyle factors, perceived discrimination may also contribute to MetS development and severity. PURPOSE: We examined the associations of perceived discrimination with MetS severity among African American adults at baseline and 8-year follow-up. METHODS: Three thousand eight hundred and seventy participants (mean age 53.8 ± 13.0; 63.1% female) without diabetes and no missing MetS severity scores at baseline were included. Each self-reported measure of discrimination at baseline (everyday, lifetime, and burden of lifetime) was classified into tertiles (low, medium, high). After adjustment for demographics and MetS risk factors, associations of discrimination were examined with a sex- and race/ethnicity-specific MetS severity Z-score. We employed a mixed model approach that allowed for the assessment of an overall association between reported discrimination at baseline and MetS severity, and for the possible change over time. RESULTS: Sex and age differences were observed in experiences with discrimination, such that men reported higher levels of all aspects of discrimination relative to women. Everyday discrimination decreased with age, whereas lifetime discrimination increased with age (p < .05). Independent of lifestyle and demographic factors, everyday and lifetime discrimination were significantly associated with MetS severity (p = .003 and p = .017, respectively) and the associations remained constant over the 8 years (i.e., no interaction with time). CONCLUSIONS: Our results suggest that, in a large community-based sample of African Americans, discrimination is a salient psychosocial risk factor for severity of MetS.
Asunto(s)
Negro o Afroamericano/psicología , Síndrome Metabólico/psicología , Racismo/psicología , Adulto , Negro o Afroamericano/estadística & datos numéricos , Anciano , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Racismo/estadística & datos numéricos , Factores de Riesgo , Índice de Severidad de la EnfermedadRESUMEN
The biogeochemical cycle of iron is of great importance to living organisms on Earth, and dissimilatory metal-reducing bacteria (DMRB) with the capability of reducing hematite (α-Fe2O3) by outer-membrane (OM) cytochromes play a great role in the iron cycle. However, the dynamic binding of cytochromes to α-Fe2O3 at the molecular level and the resulting impact on the photon-to-electron conversion of α-Fe2O3 for the iron cycle are not fully understood. To address these issues, two-dimensional IR correlation analysis coupled with molecular dynamics (MD) simulations was conducted for an OmcA-Fe2O3 system as OmcA bonds stronger with hematite in a typical DMRB,Shewanella. The photoelectric response of α-Fe2O3 with the OmcA coating was evaluated at three different potentials. Specifically, the binding groups from OmcA to α-Fe2O3 were in the sequence of carboxyl groups, amide II, and amide I. Further MD analysis reveals that both electrostatic interactions and hydrogen bonds played essential roles in the binding process, leading to the structural changes of OmcA to facilitate iron reduction. Moreover, the OmcA coating could store the photogenerated electrons from α-Fe2O3 like a capacitor and utilize the stored electrons for α-Fe2O3 reduction in dark and anoxic environments, further driving the biogeochemical cycle of iron. These investigations give the dynamic information on the OM protein/hematite interaction and provide fundamental insights into the biogeochemical cycle of iron by taking the photon-induced redox chemistry of iron oxide into consideration.
RESUMEN
We propose a new, to the best of our knowledge, compound technique to measure high-dynamic-range blood flow rate in a large-diameter vessel, which combines the dynamic scattering light (DLS) and the laser speckle contrast imaging (LSCI) methods, possessing the advantages of the high temporal resolution of DLS and the robust property of LSCI. By controlling the second-order spatial correlations of the laser speckle through two imaging systems, the speckle temporal intensity autocorrelation function g2(t) and the decorrelation time τc are directly measured using a high-speed camera. It turns out the enhanced spatial second-order correlation helps to measure the blood flow with higher dynamic range and that the measured parameter ß and the blood flow dynamics n were accurately determined. For further improvement the dynamic range, the modified LSCI method was adopted, and the decorrelation time as a function of blood flow rate was constructed. It reveals the feasibility of measuring the high flow rate in large-diameter vessels and provides significant guidance for the future biomedical study of the myocardial perfusion in coronary artery bypass grafting, ghost imaging, and ghost cytometry.