Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1860(11 Pt A): 2510-2520, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27475002

RESUMEN

BACKGROUND: Diphenylditelluride (PhTe)2 is a potent neurotoxin disrupting the homeostasis of the cytoskeleton. METHODS: Cultured astrocytes and neurons were incubated with (PhTe)2, receptor antagonists and enzyme inhibitors followed by measurement of the incorporation of [32P]orthophosphate into intermediate filaments (IFs). RESULTS: (PhTe)2 caused hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) from primary astrocytes and neurons, respectively. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors, L-type voltage-dependent calcium channels (L-VDCCs) as well as metabotropic glutamate receptors upstream of phospholipase C (PLC). Upregulated Ca(2+) influx activated protein kinase A (PKA) and protein kinase C (PKC) in astrocytes causing hyperphosphorylation of GFAP and vimentin. Hyperphosphorylated (IF) together with RhoA-activated stress fiber formation, disrupted the cytoskeleton leading to altered cell morphology. In neurons, the high intracellular Ca(2+) levels activated the MAPKs, Erk and p38MAPK, beyond PKA and PKC, provoking hyperphosphorylation of NFM, NFH and NFL. CONCLUSIONS: Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in isolated cortical astrocytes and neurons modulating the response of the cytoskeleton against the insult. GENERAL SIGNIFICANCE: Cytoskeletal misregulation is associated with neurodegeneration. This compound could be a valuable tool to induce molecular changes similar to those found in different pathologies of the brain.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Astrocitos/efectos de los fármacos , Derivados del Benceno/farmacología , Señalización del Calcio , Neuronas/efectos de los fármacos , Compuestos Organometálicos/farmacología , Animales , Astrocitos/metabolismo , Derivados del Benceno/toxicidad , Células Cultivadas , Neuronas/metabolismo , Compuestos Organometálicos/toxicidad , Ratas , Ratas Wistar
2.
Neurochem Res ; 42(8): 2257-2273, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28345118

RESUMEN

During aging, there is a marked decline in the antioxidant capacity of brain tissue, leading to a gradual loss of the antioxidant/oxidant balance, which causes oxidative damage. The effects of Paullinia cupana Mart. extract, which is described as being rich in caffeine and many polyphenol compounds, on the central nervous system have not been extensively investigated. The aim of this study was to therefore investigate the effect of a commercial guarana extract (CGE) on cognitive function, oxidative stress, and brain homeostasis proteins related to cognitive injury and senescence in middle age, male Wistar rats. Animals were randomly assigned to a group according to their treatment (saline, CGE, or caffeine). Solutions were administered daily by oral gavage for 6 months. Open field and novel object recognition tasks were performed before and after treatment. Biochemical analyses were carried out on the hippocampus and striatum. Our open field data showed an increase in exploratory activity and a decrease in anxiety-like behavior with caffeine but not with the CGE treatment. In the CGE-treated group, catalase activity decreased in the hippocampus and increased in the striatum. Analyses of the hippocampus and striatum indicate that CGE and/or caffeine altered some of the analyzed parameters in a tissue-specific manner. Our data suggest that CGE intake does not improve cognitive development, but modifies the oxidative stress machinery and neurodegenerative-signaling pathway, inhibiting pro-survival pathway molecules in the hippocampus and striatum. This may contribute to the development of unfavorable microenvironments in the brain and neurodegenerative disorders.


Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Paullinia , Extractos Vegetales/farmacología , Envejecimiento/efectos de los fármacos , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología
3.
Toxicol Lett ; 284: 161-169, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29258870

RESUMEN

Human fetuses and neonates are particularly vulnerable to methylmercury (MeHg)-induced brain damage and are sensitive even to low exposure levels. Previous work of our group evidence that prenatal exposure to MeHg causes cognitive and behavioral alterations and disrupt hippocampus signaling. The current study aimed to investigate the effect of gestational exposure of rats to MeHg at low doses (1 or 2 mg/kg) on parameters of redox imbalance and key signaling pathways in the cerebellum of their offspring. Pregnant females received MeHg (treated group) or 0.9% saline water (control group) by gavage in alternated days from gestational day 5 (GD5) until parturition and analyzes were proceed in the cerebellum of 30-day-old pups. We found increased lipid peroxidation and protein carbonylation levels as well as decreased SH content in pups prenatally exposed to 2 mg/kg MeHg. In addition, misregulated SOD/catalase activities supported imbalanced redox equilibrium. We found decreased GSK3ß(Ser9) phosphorylation, suggesting activation of this enzyme and dephosphorylation/inhibition of ERK1/2 and JNK pathways. Increased PKAα catalytic subunit could be upstream of hyperphosphorylated c-Raf(Ser259) and downregulated MAPK pathway. In addition, we found raised levels of the Ca2+-dependent protein phosphatase 2 B (PP2B). We also found preserved immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and NeuN in MeHg-exposed pups. Western blot analysis showed unaltered levels of BAX/BCL-XL, BAD/BCL-2 and active caspase 3. Together, these findings support absence of reactive astrocytes, neuronal damage and apoptotic cell death in the cerebellum of MeHg treated pups. The present study provides evidence that prenatal exposure to MeHg leads to later redox imbalance and disrupted signaling mechanisms in the cerebellum of 30-day-old pups potentially predisposing them to long-lasting neurological impairments in CNS.


Asunto(s)
Cerebelo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Compuestos de Metilmercurio/toxicidad , Neuronas/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Neuronas/metabolismo , Oxidación-Reducción , Embarazo , Carbonilación Proteica/efectos de los fármacos , Ratas , Ratas Wistar
4.
Toxicology ; 379: 1-11, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137618

RESUMEN

Diphenylditelluride (PhTe)2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe)2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca2+ influx downstream of NMDA receptors activated Ca2+-dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. ßIII tubulin staining showed that neurite meshworks are not altered by (PhTe)2, suggesting greater susceptibility of astrocytes than neurons to (PheTe)2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca2+ is one of the crucial signals that modulate the action of (PhTe)2 in co-cultured astrocytes and neurons and highlights the cytoskeleton as an end-point of the neurotoxicity of this compound. Cytoskeletal misregulation is associated with cell dysfunction, therefore, the understanding of the molecular mechanisms mediating the neurotoxicity of this compound is a matter of increasing interest since tellurium compounds are increasingly released in the environment.


Asunto(s)
Astrocitos/efectos de los fármacos , Derivados del Benceno/toxicidad , Comunicación Celular , Citoesqueleto/efectos de los fármacos , Neuronas/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Animales , Astrocitos/fisiología , Calcio/metabolismo , Técnicas de Cocultivo , Neuronas/fisiología , Fosforilación , Ratas
5.
Appl Biochem Biotechnol ; 172(2): 1085-97, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24142353

RESUMEN

Caulobacter crescentus is able to express several enzymes involved in the utilization of lignocellulosic biomasses. Five genes, xynB1-5, that encode ß-xylosidases are present in the genome of this bacterium. In this study, the xynB2 gene, which encodes ß-xylosidase II (CCNA_02442), was cloned under the control of the PxylX promoter to generate the O-xynB2 strain, which overexpresses the enzyme in the presence of xylose. In addition, a null mutant strain, Δ-xynB2, was created by two homologous recombination events where the chromosomal xynB2 gene was replaced by a copy that was disrupted by the spectinomycin-resistant cassette. We demonstrated that C. crescentus cells lacking ß-xylosidase II upregulates the xynB genes inducing ß-xylosidase activity. Transcriptional analysis revealed that xynB1 (RT-PCR analysis) and xynB2 (lacZ transcription fusion) gene expression was induced in the Δ-xynB2 cells, and high ß-xylosidase activity was observed in the presence of different agro-industrial residues in the null mutant strain, a characteristic that can be explored and applied in biotechnological processes. In contrast, overexpression of the xynB2 gene caused downregulation of the expression and activity of the ß-xylosidase. For example, the ß-xylosidase activity that was obtained in the presence of sugarcane bagasse was 7-fold and 16-fold higher than the activity measured in the C. crescentus parental and O-xynB2 cells, respectively. Our results suggest that ß-xylosidase II may have a role in controlling the expression of the xynB1 and xynB2 genes in C. crescentus.


Asunto(s)
Caulobacter crescentus/enzimología , Caulobacter crescentus/genética , Eliminación de Gen , Genes Bacterianos , Regulación hacia Arriba/genética , Xilosidasas/genética , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Industrias , Mutación/genética , Fenotipo , Regiones Promotoras Genéticas/genética , Transcripción Genética , Xilosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA