Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(1): e1011118, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696458

RESUMEN

Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Humanos , Antimaláricos/farmacología , Ciclofilinas/genética , Ciclofilinas/metabolismo , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Repeticiones de Microsatélite , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación hacia Arriba
2.
Malar J ; 23(1): 138, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720269

RESUMEN

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mianmar , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Estudios Transversales , Femenino , Masculino , Adolescente , Adulto , Administración Masiva de Medicamentos , Adulto Joven , Mutación , Niño , Preescolar , Persona de Mediana Edad , Quinolinas/farmacología , Quinolinas/uso terapéutico , Erradicación de la Enfermedad/estadística & datos numéricos , Piperazinas
3.
PLoS Pathog ; 16(12): e1009133, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320907

RESUMEN

The rapid and aggressive spread of artemisinin-resistant Plasmodium falciparum carrying the C580Y mutation in the kelch13 gene is a growing threat to malaria elimination in Southeast Asia, but there is no evidence of their spread to other regions. We conducted cross-sectional surveys in 2016 and 2017 at two clinics in Wewak, Papua New Guinea (PNG) where we identified three infections caused by C580Y mutants among 239 genotyped clinical samples. One of these mutants exhibited the highest survival rate (6.8%) among all parasites surveyed in ring-stage survival assays (RSA) for artemisinin. Analyses of kelch13 flanking regions, and comparisons of deep sequencing data from 389 clinical samples from PNG, Indonesian Papua and Western Cambodia, suggested an independent origin of the Wewak C580Y mutation, showing that the mutants possess several distinctive genetic features. Identity by descent (IBD) showed that multiple portions of the mutants' genomes share a common origin with parasites found in Indonesian Papua, comprising several mutations within genes previously associated with drug resistance, such as mdr1, ferredoxin, atg18 and pnp. These findings suggest that a P. falciparum lineage circulating on the island of New Guinea has gradually acquired a complex ensemble of variants, including kelch13 C580Y, which have affected the parasites' drug sensitivity. This worrying development reinforces the need for increased surveillance of the evolving parasite populations on the island, to contain the spread of resistance.


Asunto(s)
Antiinfecciosos , Artemisininas , Resistencia a Medicamentos/genética , Genes Protozoarios/genética , Plasmodium falciparum/genética , Antiinfecciosos/uso terapéutico , Artemisininas/uso terapéutico , Estudios Transversales , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mutación , Papúa Nueva Guinea
4.
Antimicrob Agents Chemother ; 65(12): e0112121, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516247

RESUMEN

Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People's Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Resistencia a Múltiples Medicamentos/genética , Marcadores Genéticos , Humanos , Estudios Longitudinales , Malaria Falciparum/tratamiento farmacológico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
5.
BMC Med ; 18(1): 45, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127002

RESUMEN

BACKGROUND: Spread of malaria and antimalarial resistance through human movement present major threats to current goals to eliminate the disease. Bordering the Greater Mekong Subregion, southeast Bangladesh is a potentially important route of spread to India and beyond, but information on travel patterns in this area are lacking. METHODS: Using a standardised short survey tool, 2090 patients with malaria were interviewed at 57 study sites in 2015-2016 about their demographics and travel patterns in the preceding 2 months. RESULTS: Most travel was in the south of the study region between Cox's Bazar district (coastal region) to forested areas in Bandarban (31% by days and 45% by nights), forming a source-sink route. Less than 1% of travel reported was between the north and south forested areas of the study area. Farmers (21%) and students (19%) were the top two occupations recorded, with 67 and 47% reporting travel to the forest respectively. Males aged 25-49 years accounted for 43% of cases visiting forests but only 24% of the study population. Children did not travel. Women, forest dwellers and farmers did not travel beyond union boundaries. Military personnel travelled the furthest especially to remote forested areas. CONCLUSIONS: The approach demonstrated here provides a framework for identifying key traveller groups and their origins and destinations of travel in combination with knowledge of local epidemiology to inform malaria control and elimination efforts. Working with the NMEP, the findings were used to derive a set of policy recommendations to guide targeting of interventions for elimination.


Asunto(s)
Malaria/epidemiología , Viaje/tendencias , Adolescente , Adulto , Bangladesh , Femenino , Humanos , India , Masculino , Estudios Prospectivos , Adulto Joven
6.
PLoS Pathog ; 14(3): e1006930, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29538461

RESUMEN

Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen that mimics how parasites interact with the drug within patients. This long term in vitro selection induced profound stage-specific resistance to artemisinin and its relative compounds. Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that enhanced adaptive responses against oxidative stress and protein damage are associated with decreased artemisinin susceptibility. This corroborates our previous findings implicating these cellular functions in artemisinin resistance in natural infections. Genomic characterization of the two derived parasite lines revealed a spectrum of sequence and copy number polymorphisms that could play a role in regulating artemisinin response, but did not include mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken together, here we present a functional in vitro model of artemisinin resistance that is underlined by a new set of genetic polymorphisms as potential genetic markers.


Asunto(s)
Artemisininas/farmacología , Resistencia a Medicamentos/genética , Marcadores Genéticos , Malaria Falciparum/parasitología , Estrés Oxidativo , Polimorfismo Genético , Proteínas Protozoarias/metabolismo , Antimaláricos/farmacología , Perfilación de la Expresión Génica , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Fenotipo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética
7.
Malar J ; 19(1): 181, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404110

RESUMEN

BACKGROUND: Long regarded as an epicenter of drug-resistant malaria, Southeast Asia continues to provide new challenges to the control of Plasmodium falciparum malaria. Recently, resistance to the artemisinin combination therapy partner drug piperaquine has been observed in multiple locations across Southeast Asia. Genetic studies have identified single nucleotide polymorphisms as well as copy number variations in the plasmepsin 2 and plasmepsin 3 genes, which encode haemoglobin-degrading proteases that associate with clinical and in vitro piperaquine resistance. RESULTS: To accurately and quickly determine the presence of copy number variations in the plasmepsin 2/3 genes in field isolates, this study developed a quantitative PCR assay using TaqMan probes. Copy number estimates were validated using a separate SYBR green-based quantitative PCR assay as well as a novel PCR-based breakpoint assay to detect the hybrid gene product. Field samples from 2012 to 2015 across three sites in Cambodia were tested using DNA extracted from dried blood spots and whole blood to monitor the extent of plasmepsin 2/3 gene amplifications, as well as amplifications in the multidrug resistance transporter 1 gene (pfmdr1), a marker of mefloquine resistance. This study found high concordance across all methods of copy number detection. For samples derived from dried blood spots, a success rate greater than 80% was found in each assay, with more recent samples performing better. Evidence of extensive plasmepsin 2/3 copy number amplifications was observed in Pursat (94%, 2015) (Western Cambodia) and Preah Vihear (87%, 2014) (Northern Cambodia), and lower levels in Ratanakiri (16%, 2014) (Eastern Cambodia). A shift was observed from two copies of plasmepsin 2 in Pursat in 2013 to three copies in 2014-2015 (25% to 64%). Pfmdr1 amplifications were absent in all samples from Preah Vihear and Ratanakiri in 2014 and absent in Pursat in 2015. CONCLUSIONS: The multiplex TaqMan assay is a robust tool for monitoring both plasmepsin 2/3 and pfmdr1 copy number variations in field isolates, and the SYBR-green and breakpoint assays are useful for monitoring plasmepsin 2/3 amplifications. This study shows increasing levels of plasmepsin 2 copy numbers across Cambodia from 2012 to 2015 and a complete reversion of multicopy pfmdr1 parasites to single copy parasites in all study locations.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/genética , Variaciones en el Número de Copia de ADN/genética , Resistencia a Medicamentos/genética , Técnicas Genéticas/instrumentación , Plasmodium falciparum/genética , Quinolinas/farmacología
8.
Malar J ; 19(1): 271, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32718342

RESUMEN

The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.


Asunto(s)
Monitoreo Epidemiológico , Genotipo , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Vigilancia de la Población , Asia/epidemiología , Congresos como Asunto , Retroalimentación , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Islas del Pacífico/epidemiología
9.
Nature ; 505(7481): 50-5, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24352242

RESUMEN

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Alelos , Animales , Células Sanguíneas/parasitología , Cambodia , Resistencia a Medicamentos/efectos de los fármacos , Marcadores Genéticos/genética , Semivida , Humanos , Malaria Falciparum/tratamiento farmacológico , Mutación/genética , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/aislamiento & purificación , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/química , Factores de Tiempo
10.
J Infect Dis ; 220(11): 1738-1749, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30668735

RESUMEN

The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.


Asunto(s)
Genotipo , Malaria Vivax/parasitología , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Selección Genética , Adaptación Biológica , Adolescente , Animales , Niño , Preescolar , Etiopía , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Plasmodium vivax/clasificación , Prevalencia
11.
PLoS Med ; 16(2): e1002745, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768615

RESUMEN

BACKGROUND: The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent. METHODS AND FINDINGS: After establishing vector control and community-based case management and following intensive community engagement, we used restricted randomisation within village pairs to select 8 villages to receive early DP MDA and 8 villages as controls for 12 months, after which the control villages received deferred DP MDA. The MDA comprised 3 monthly rounds of 3 daily doses of DP and, except in Cambodia, a single low dose of primaquine. We conducted exhaustive cross-sectional surveys of the entire population of each village at quarterly intervals using ultrasensitive quantitative PCR to detect Plasmodium infections. The study was conducted between May 2013 and July 2017. The investigators randomised 16 villages that had a total of 8,445 residents at the start of the study. Of these 8,445 residents, 4,135 (49%) residents living in 8 villages, plus an additional 288 newcomers to the villages, were randomised to receive early MDA; 3,790 out of the 4,423 (86%) participated in at least 1 MDA round, and 2,520 out of the 4,423 (57%) participated in all 3 rounds. The primary outcome, P. falciparum prevalence by month 3 (M3), fell by 92% (from 5.1% [171/3,340] to 0.4% [12/2,828]) in early MDA villages and by 29% (from 7.2% [246/3,405] to 5.1% [155/3,057]) in control villages. Over the following 9 months, the P. falciparum prevalence increased to 3.3% (96/2,881) in early MDA villages and to 6.1% (128/2,101) in control villages (adjusted incidence rate ratio 0.41 [95% CI 0.20 to 0.84]; p = 0.015). Individual protection was proportional to the number of completed MDA rounds. Of 221 participants with subclinical P. falciparum infections who participated in MDA and could be followed up, 207 (94%) cleared their infections, including 9 of 10 with artemisinin- and piperaquine-resistant infections. The DP MDAs were well tolerated; 6 severe adverse events were detected during the follow-up period, but none was attributable to the intervention. CONCLUSIONS: Added to community-based basic malaria control measures, 3 monthly rounds of DP MDA reduced the incidence and prevalence of falciparum malaria over a 1-year period in areas affected by artemisinin resistance. P. falciparum infections returned during the follow-up period as the remaining infections spread and malaria was reintroduced from surrounding areas. Limitations of this study include a relatively small sample of villages, heterogeneity between villages, and mobility of villagers that may have limited the impact of the intervention. These results suggest that, if used as part of a comprehensive, well-organised, and well-resourced elimination programme, DP MDA can be a useful additional tool to accelerate malaria elimination. TRIAL REGISTRATION: ClinicalTrials.gov NCT01872702.


Asunto(s)
Antimaláricos/administración & dosificación , Erradicación de la Enfermedad/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Administración Masiva de Medicamentos/métodos , Adolescente , Adulto , Asia Sudoriental/epidemiología , Niño , Análisis por Conglomerados , Estudios Cruzados , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Humanos , Malaria Falciparum/diagnóstico , Masculino , Adulto Joven
12.
Malar J ; 17(1): 325, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200970

RESUMEN

Following publication of the original article [1], one of the authors has highlighted an xml-related discrepancy concerning the author group titled 'Additional Tracking Resistance to Artemisinin Collaboration authors (TRAC Group Authorship)', listed under the Acknowledgements section.

13.
Nature ; 487(7407): 375-9, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22722859

RESUMEN

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Asunto(s)
Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Alelos , Genoma de Protozoos , Genotipo , Humanos , Filogenia , Plasmodium falciparum/clasificación , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal
14.
Artículo en Inglés | MEDLINE | ID: mdl-28137815

RESUMEN

The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites.


Asunto(s)
Enfermedades Endémicas , Malaria Falciparum/epidemiología , Mutación , Parasitemia/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Alelos , Antimaláricos/farmacología , Artemisininas/farmacología , Ensayos Clínicos como Asunto , Combinación de Medicamentos , Monitoreo Epidemiológico , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Frecuencia de los Genes , Haplotipos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Quinolinas/farmacología , Vietnam/epidemiología
15.
Malar J ; 16(1): 195, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28494763

RESUMEN

BACKGROUND: Artemisinin resistance is associated with delayed parasite clearance half-life in vivo and correlates with ring-stage survival under dihydroartemisinin in vitro. Both phenotypes are associated with mutations in the PF3D7_1343700 pfkelch13 gene. Recent spread of artemisinin resistance and emerging piperaquine resistance in Southeast Asia show that artemisinin combination therapy, such as dihydroartemisinin-piperaquine, are losing clinical effectiveness, prompting investigation of drug resistance mechanisms and development of strategies to surmount emerging anti-malarial resistance. METHODS: Sixty-eight parasites isolates with in vivo clearance data were obtained from two Tracking Resistance to Artemisinin Collaboration study sites in Cambodia, culture-adapted, and genotyped for pfkelch13 and other mutations including pfmdr1 copy number; and the RSA0-3h survival rates and response to antimalarial drugs in vitro were measured for 36 of these isolates. RESULTS: Among these 36 parasites one isolate demonstrated increased ring-stage survival for a PfKelch13 mutation (D584V, RSA0-3h = 8%), previously associated with slow clearance but not yet tested in vitro. Several parasites exhibited increased ring-stage survival, yet lack pfkelch13 mutations, and one isolate showed evidence for piperaquine resistance. CONCLUSIONS: This study of 68 culture-adapted Plasmodium falciparum clinical isolates from Cambodia with known clearance values, associated the D584V PfKelch13 mutation with increased ring-stage survival and identified parasites that lack pfkelch13 mutations yet exhibit increased ring-stage survival. These data suggest mutations other than those found in pfkelch13 may be involved in conferring artemisinin resistance in P. falciparum. Piperaquine resistance was also detected among the same Cambodian samples, consistent with reports of emerging piperaquine resistance in the field. These culture-adapted parasites permit further investigation of mechanisms of both artemisinin and piperaquine resistance and development of strategies to prevent or overcome anti-malarial resistance.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Cambodia , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo
16.
Malar J ; 16(1): 141, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28381261

RESUMEN

The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.


Asunto(s)
Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Malaria Vivax/tratamiento farmacológico , Asia , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Humanos , Islas del Pacífico
17.
J Infect Dis ; 214(8): 1235-42, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27456706

RESUMEN

In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Antimaláricos/farmacología , ADN Protozoario/genética , Dosificación de Gen/genética , Genómica/métodos , Genotipo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Mefloquina/farmacología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium vivax/efectos de los fármacos , Tailandia
18.
Malar J ; 15(1): 541, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825353

RESUMEN

BACKGROUND: Declining anti-malarial efficacy of artemisinin-based combination therapy, and reduced Plasmodium falciparum susceptibility to individual anti-malarials are being documented across an expanding area of Southeast Asia (SEA). Genotypic markers complement phenotypic studies in assessing the efficacy of individual anti-malarials. METHODS: The markers pfmdr1 and pfcrt were genotyped in parasite samples obtained in 2011-2014 at 14 TRAC (Tracking Resistance to Artemisinin Collaboration) sites in mainland Southeast Asia using a combination of PCR and next-generation sequencing methods. RESULTS: Pfmdr1 amplification, a marker of mefloquine and lumefantrine resistance, was highly prevalent at Mae Sot on the Thailand-Myanmar border (59.8% of isolates) and common (more than 10%) at sites in central Myanmar, eastern Thailand and western Cambodia; however, its prevalence was lower than previously documented in Pailin, western Cambodia. The pfmdr1 Y184F mutation was common, particularly in and around Cambodia, and the F1226Y mutation was found in about half of samples in Mae Sot. The functional significance of these two mutations remains unclear. Other previously documented pfmdr1 mutations were absent or very rare in the region. The pfcrt mutation K76T associated with chloroquine resistance was found in 98.2% of isolates. The CVIET haplotype made up 95% or more of isolates in western SEA while the CVIDT haplotype was common (30-40% of isolates) in north and northeastern Cambodia, southern Laos, and southern Vietnam. CONCLUSIONS: These findings generate cause for concern regarding the mid-term efficacy of artemether-lumefantrine in Myanmar, while the absence of resistance-conferring pfmdr1 mutations and SVMNT pfcrt haplotypes suggests that amodiaquine could be an efficacious component of anti-malarial regimens in SEA.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Amodiaquina/farmacología , Asia Sudoriental , ADN Protozoario/química , ADN Protozoario/genética , Etanolaminas/farmacología , Fluorenos/farmacología , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lumefantrina , Mutación Missense , Reacción en Cadena de la Polimerasa
19.
Malar J ; 15: 51, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821618

RESUMEN

BACKGROUND: Malaria parasites have evolved a series of intricate mechanisms to survive and propagate within host red blood cells. Intra-erythrocytic parasitism requires these organisms to digest haemoglobin and detoxify iron-bound haem. These tasks are executed by haemoglobin-specific proteases and haem biocrystallization factors that are components of a large multi-subunit complex. Since haemoglobin processing machineries are functionally and genetically linked to the modes of action and resistance mechanisms of several anti-malarial drugs, an understanding of their evolutionary history is important for drug development and drug resistance prevention. METHODS: Maximum likelihood trees of genetic repertoires encoding haemoglobin processing machineries within Plasmodium species, and with the representatives of Apicomplexan species with various host tropisms, were created. Genetic variants were mapped onto existing three-dimensional structures. Genome-wide single nucleotide polymorphism data were used to analyse the selective pressure and the effect of these mutations at the structural level. RESULTS: Recent expansions in the falcipain and plasmepsin repertoires are unique to human malaria parasites especially in the Plasmodium falciparum and P. reichenowi lineage. Expansion of haemoglobin-specific plasmepsins occurred after the separation event of Plasmodium species, but the other members of the plasmepsin family were evolutionarily conserved with one copy for each sub-group in every Apicomplexan species. Haemoglobin-specific falcipains are separated from invasion-related falcipain, and their expansions within one specific locus arose independently in both P. falciparum and P. vivax lineages. Gene conversion between P. falciparum falcipain 2A and 2B was observed in artemisinin-resistant strains. Comparison between the numbers of non-synonymous and synonymous mutations suggests a strong selective pressure at falcipain and plasmepsin genes. The locations of amino acid changes from non-synonymous mutations mapped onto protein structures revealed clusters of amino acid residues in close proximity or near the active sites of proteases. CONCLUSION: A high degree of polymorphism at the haemoglobin processing genes implicates an imposition of selective pressure. The identification in recent years of functional redundancy of haemoglobin-specific proteases makes them less appealing as potential drug targets, but their expansions, especially in the human malaria parasite lineages, unequivocally point toward their functional significance during the independent and repetitive adaptation events in malaria parasite evolutionary history.


Asunto(s)
Evolución Molecular , Estudio de Asociación del Genoma Completo , Hemoglobinas/metabolismo , Filogenia , Plasmodium/clasificación , Plasmodium/enzimología , Proteínas Protozoarias/metabolismo , Animales , Cisteína Endopeptidasas/metabolismo , Hemo/metabolismo , Plasmodium falciparum/enzimología , Reacción en Cadena de la Polimerasa
20.
Proc Natl Acad Sci U S A ; 110(1): 240-5, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248304

RESUMEN

The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.


Asunto(s)
Artemisininas/farmacología , Resistencia a Medicamentos/genética , Sitios Genéticos/genética , Plasmodium falciparum/genética , Selección Genética , Asia Sudoriental , Marcadores Genéticos/genética , Genotipo , Funciones de Verosimilitud , Oportunidad Relativa , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA