Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(16): e2300942120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036984

RESUMEN

How are ions distributed in the three-dimensional (3D) volume confined in a nanoscale compartment? Regulation of ionic flow in the intracellular milieu has been explained by different theoretical models and experimentally demonstrated for several compartments with microscale dimensions. Most of these models predict a homogeneous distribution of ions seconds or milliseconds after an initial diffusion step formed at the ion translocation site, leaving open questions when it comes to ion/element distribution in spaces/compartments with nanoscale dimensions. Due to the influence of compartment size on the regulation of ionic flow, theoretical variations of classical models have been proposed, suggesting heterogeneous distributions of ions/elements within nanoscale compartments. Nonetheless, such assumptions have not been fully proven for the 3D volume of an organelle. In this work, we used a combination of cutting-edge electron microscopy techniques to map the 3D distribution of diffusible elements within the whole volume of acidocalcisomes in trypanosomes. Cryofixed cells were analyzed by scanning transmission electron microscopy tomography combined with elemental mapping using a high-performance setup of X-ray detectors. Results showed the existence of elemental nanodomains within the acidocalcisomes, where cationic elements display a self-excluding pattern. These were validated by Pearson correlation analysis and in silico molecular dynamic simulations. Formation of element domains within the 3D space of an organelle is demonstrated. Distribution patterns that support the electrodiffusion theory proposed for nanophysiology models have been found. The experimental pipeline shown here can be applied to a variety of models where ion mobilization plays a crucial role in physiological processes.


Asunto(s)
Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Calcio/metabolismo , Orgánulos/metabolismo , Microscopía Electrónica
2.
J Struct Biol ; 216(1): 108064, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280689

RESUMEN

The inner structure of the flagella of Giardia intestinalis is similar to that of other organisms, consisting of nine pairs of outer microtubules and a central pair containing radial spokes. Although the 9+2 axonemal structure is conserved, it is not clear whether subregions, including the transition zone, are present in the flagella of this parasite. Giardia axonemes originate from basal bodies and have a lengthy cytosolic portion before becoming active flagella. The region of the emergence of the flagellum is not accompanied by any membrane specialization, as seen in other protozoa. Although Giardia is an intriguing model of study, few works focused on the ultrastructural analysis of the flagella of this parasite. Here, we analyzed the externalization region of the G. intestinalis flagella using ultra-high resolution scanning microscopy (with electrons and ions), atomic force microscopy in liquid medium, freeze fracture, and electron tomography. Our data show that this region possesses a distinctive morphological feature - it extends outward and takes on a ring-like shape. When the plasma membrane is removed, a structure surrounding the axoneme becomes visible in this region. This new extra-axonemal structure is observed in all pairs of flagella of trophozoites and remains attached to the axoneme even when the interconnections between the axonemal microtubules are disrupted. High-resolution scanning electron microscopy provided insights into the arrangement of this structure, contributing to the characterization of the externalization region of the flagella of this parasite.


Asunto(s)
Axonema , Giardia lamblia , Giardia lamblia/ultraestructura , Microtúbulos/metabolismo , Flagelos/metabolismo , Microscopía Electrónica de Rastreo
3.
Biochem Biophys Res Commun ; 739: 150583, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182354

RESUMEN

This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.

4.
Histochem Cell Biol ; 161(1): 59-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37736815

RESUMEN

Despite being extensively studied because of the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interactions with mammalian cells are still poorly understood. Furthermore, little is known about this coronavirus cycle within the host cells, particularly the steps that lead to viral egress. This study aimed to shed light on the morphological features of SARS-CoV-2 egress by utilizing transmission and high-resolution scanning electron microscopy, along with serial electron tomography, to describe the route of nascent virions towards the extracellular medium. Electron microscopy revealed that the clusters of viruses in the paracellular space did not seem to result from collective virus release. Instead, virus accumulation was observed on incurved areas of the cell surface, with egress primarily occurring through individual vesicles. Additionally, our findings showed that the emission of long membrane projections, which could facilitate virus surfing in Vero cells infected with SARS-CoV-2, was also observed in non-infected cultures, suggesting that these are constitutive events in this cell lineage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , Células Vero , Línea Celular , Microscopía Electrónica de Rastreo , Mamíferos
5.
J Microsc ; 294(3): 420-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747464

RESUMEN

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

6.
J Microsc ; 294(3): 397-410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691400

RESUMEN

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Asunto(s)
Investigadores , Humanos , Movilidad Laboral , Investigación Biomédica/métodos , Selección de Profesión
7.
Curr Top Membr ; 93: 27-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39181577

RESUMEN

Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.


Asunto(s)
Endocitosis , Malaria , Plasmodium , Animales , Humanos , Malaria/parasitología , Malaria/metabolismo , Plasmodium/metabolismo , Plasmodium/fisiología , Eritrocitos/parasitología , Eritrocitos/metabolismo , Membrana Celular/metabolismo , Hemoglobinas/metabolismo
8.
Curr Top Microbiol Immunol ; 432: 139-159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972883

RESUMEN

Extracellular vesicles (EVs) are nano-sized structures that play important roles in a variety of biological processes among members of the Eukaryota domain. They have been studied since the 1940s and a broader use of different microscopy techniques to image either isolated vesicles or vesicles within the intracellular milieu (trafficking) has been limited by their nanometric size, usually below the resolution limit of most standard light microscopes. The development of genetically encoded fluorescent proteins and fluorescent probes able to switch between "on" and "off" states, as well the improvement in computer-assisted microscopy, photon detector devices, illumination designs, and imaging strategies in the late Twentieth century, boosted the use of light microscopes to provide structural and functional information at the sub-diffraction resolution, taking advantage of a nondestructive analytical probe such light, and opening new possibilities in the study of life at the nanoscale. As well, traditional and novel electron microscopy techniques have been widely used in the characterization of subcellular compartments, either isolated or in situ, providing a comprehensive understanding of their functional role in many cellular processes. Here, we present basic aspects of some of these techniques that have already been applied and their potential application to the study of fungal vesicles.


Asunto(s)
Vesículas Extracelulares , Microscopía , Hongos , Proteínas
9.
J Eukaryot Microbiol ; 69(6): e12939, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35916682

RESUMEN

Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Humanos , Trypanosoma cruzi/metabolismo , Vacuolas/metabolismo , Enfermedad de Chagas/parasitología , Mamíferos
10.
J Eukaryot Microbiol ; 69(3): e12894, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152525

RESUMEN

The Haemogregarinidae family (Apicomplexa: Adeleina) comprises hemoprotozoa that infect mammals, birds, amphibians, fish, and reptiles. Some morphological characteristics of the Cyrilia lignieresi have been described previously, but the parasite-erythrocyte relationship is still poorly understood. In order to understand the structural architecture of C. lignieresi-infected red blood cells, electron microscopy-based three-dimensional reconstruction was carried out using TEM as well as FIB-SEM tomography. Results showed that development of the macrogametocyte-stage inside the red blood cell is related to an increase in cleft-like structures in the host cell cytoplasm. Furthermore, other aspects related to parasite intraerythrocytic development were explored by 3D visualization techniques. We observed the invagination of a large extension of the Inner Membrane Complex (IMC) on the parasite body, which results from or induces a folding of the posterior end of the parasite. Small tubular structures were seen associated with areas related to IMC folding. Taken together, results provide new information on the remodeling of erythrocytes induced by the protozoan C. lignieresi.


Asunto(s)
Apicomplexa , Eucoccidiida , Animales , Eritrocitos/parasitología , Mamíferos , Microscopía Electrónica
11.
Biol Cell ; 113(6): 281-293, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33600624

RESUMEN

BACKGROUND INFORMATION: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection induces an alteration in the endomembrane system of the mammalian cells. In this study, we used transmission electron microscopy and electron tomography to investigate the main structural alterations in the cytoplasm of Vero cells infected with a SARS-CoV-2 isolate from São Paulo state (Brazil). RESULTS: Different membranous structures derived from the zippered endoplasmic reticulum were observed along with virus assembly through membrane budding. Also, we demonstrated the occurrence of annulate lamellae in the cytoplasm of infected cells and the presence of virus particles in the perinuclear space. CONCLUSIONS AND SIGNIFICANCE: This study contributes to a better understanding of the cell biology of SARS-CoV-2 and the mechanisms of the interaction of the virus with the host cell that promote morphological changes, recruitment of organelles and cell components, in a context of a virus-induced membrane remodelling.


Asunto(s)
Retículo Endoplásmico/virología , Membranas Intracelulares/virología , Membrana Nuclear/virología , SARS-CoV-2 , Animales , COVID-19 , Chlorocebus aethiops , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/ultraestructura , Humanos , Membranas Intracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Membrana Nuclear/ultraestructura , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/ultraestructura , Células Vero , Ensamble de Virus , Replicación Viral
12.
An Acad Bras Cienc ; 94(3): e20211090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36259824

RESUMEN

The search for new therapeutic strategies for leishmaniasis treatment is essential due to the side effects of available drugs and the increasing incidence of resistance to them. Marine sponges use chemical compounds as a defense mechanism, and several of them present interesting pharmacological properties. The aim of this study was to evaluate the in vitro activity of the aqueous extract of the marine sponge Dercitus (Stoeba) latex against Leishmania amazonensis. MIC and toxicity against mammal cells were evaluated through broth microdilution assays. Transmission electron microscopy analysis was performed to assess possible effects on L. amazonensis ultrastructure. Arginase and proteolytic activities were measured by spectrometric methodologies. The extract of Dercitus (Stoeba) latex displayed antileishmanial activity and moderate toxicity against peritonial macrophages. Ultrastructural changes were observed after the growth of L. amazonensis promastigotes in the presence of the extract at 150 µg.ml-1 (IC50), mainly on acidocalcysomes. The extract was able to inhibit the activity of arginase and serine proteases. This study shows that Dercitus (Stoeba) latex aqueous extract may be a novel potential source of protozoa protease inhibitors and drugs that are less toxic to be used in the treatment of L. amazonensis infections.


Asunto(s)
Antiprotozoarios , Leishmania mexicana , Poríferos , Animales , Látex/farmacología , Arginasa/farmacología , Brasil , Leishmania mexicana/ultraestructura , Antiprotozoarios/farmacología , Inhibidores de Proteasas/farmacología , Serina Proteasas/farmacología , Mamíferos
13.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328327

RESUMEN

Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•-) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•- formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•- formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•- formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•- formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Daño por Reperfusión , Lesión Renal Aguda/metabolismo , Tejido Adiposo/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Ratas , Ratas Wistar , Reperfusión , Daño por Reperfusión/metabolismo , Superóxidos/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-33593845

RESUMEN

Sporotrichosis is an emerging mycosis caused by members of the genus Sporothrix The disease affects humans and animals, particularly cats, which plays an important role in the zoonotic transmission. Feline sporotrichosis treatment options include itraconazole (ITC), potassium iodide and amphotericin B, drugs usually associated with deleterious adverse reactions and refractoriness in cats, especially when using ITC. Thus, affordable, non-toxic and clinically effective anti-Sporothrix agents are needed. Recently, acylhydrazones (AH), molecules targeting vesicular transport and cell cycle progression, exhibited a potent antifungal activity against several fungal species and displayed low toxicity when compared to the current drugs. In this work, the AH derivatives D13 and SB-AF-1002 were tested against Sporothrix schenckii and Sporothrix brasiliensis Minimal inhibitory concentrations of 0.12 - 1 µg/mL were observed for both species in vitro D13 and SB-AF-1002 showed an additive effect with itraconazole. Treatment with D13 promoted yeast disruption with release of intracellular components, as confirmed by transmission electron microscopy of S. brasiliensis exposed to the AH derivatives. AH-treated cells displayed thickening of the cell wall, discontinuity of the cell membrane and an intense cytoplasmic degeneration. In a murine model of sporotrichosis, treatment with AH derivatives was more efficient than ITC, the drug of choice for sporotrichosis. The results of the preliminary clinical study in cats indicate that D13 is safe and has potential to become a therapeutic option for sporotrichosis when associated to ITC. Our results expand the antifungal broadness of AH derivatives and suggest that these drugs could be exploited to combat sporotrichosis.

15.
Med Mycol ; 59(10): 993-1005, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34036352

RESUMEN

Silver compounds are widely known for their antimicrobial activity, but can exert toxic effects to the host. Among the strategies to reduce its toxicity, incorporation into biopolymers has shown promising results. We investigated the green syntheses of silver nanoparticles (AgNPs) and their functionalization in a chitosan matrix (AgNPs@Chi) as a potential treatment against Candida spp. Inhibitory concentrations ranging between 0.06 and  1 µg/ml were observed against distinct Candida species. Nanocomposite-treated cells displayed cytoplasmic degeneration and a cell membrane and wall disruption. Silver nanocomposites in combination with fluconazole and amphotericin B showed an additive effect when analyzed by the Bliss method. The low cytotoxicity displayed in mammalian cells and in the Galleria mellonella larvae suggested their potential use in vivo. When tested as a topical treatment against murine cutaneous candidiasis, silver nanocomposites reduced the skin fungal burden in a dose-response behavior and favored tissue repair. In addition, the anti-biofilm effect of AgNPs@Chi in human nail model was demonstrated, suggesting that the polymeric formulation of AgNPs does not affect antifungal activity even against sessile cells. Our results suggest that AgNPs@Chi seems to be a less toxic and effective topical treatment for superficial candidiasis. LAY SUMMARY: This study demonstrated the efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Candida. AgNPs incorporated in chitosan displayed a reduced toxicity. Tests in infected mice showed the effectiveness of the treatment. AgNPs-chitosan could be an alternative to combat candidiasis.


Asunto(s)
Candidiasis , Quitosano , Nanopartículas del Metal , Nanocompuestos , Enfermedades de los Roedores , Animales , Antibacterianos , Candidiasis/tratamiento farmacológico , Candidiasis/veterinaria , Ratones , Pruebas de Sensibilidad Microbiana/veterinaria , Plata/farmacología
16.
Cell Physiol Biochem ; 52(6): 1463-1483, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31099507

RESUMEN

BACKGROUND/AIMS: The therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) in kidney injury has been largely reported. However, new approaches are necessary to optimize the efficacy in the treatment of renal diseases. MSCs physiologically are under a low O2 partial pressure (pO2), and culturing adipose-derived MSCs (ADMSCs) in hypoxia alters their secretory paracrine properties. The aim of this study was to evaluate whether hypoxia preconditioning of ADMSCs alters the properties of secreted EVs to improve renal recovery after ischemia-reperfusion injury (IRI). METHODS: The supernatants of ADMSCs cultivated under 21% pO2 (control) or 1% pO2 (hypoxia) were ultracentrifuged for EVs isolation that were posteriorly characterized by flow cytometry and electron microscopy. The uptake and effects of these EVs were analyzed by using in vitro and in vivo models. HK-2 renal tubule cell line was submitted do ATP depletion injury model. Proteomic analyses of these cells treated with EVs after injury were performed by nano-UPLC tandem nano-ESI-HDMSE method. For in vivo analyses, male Wistar rats were submitted to 45 min bilateral ischemia, followed by renal intracapsular administration of ADMSC-EVs within a 72 h reperfusion period. Histological, immunohistochemical and qRT-PCR analysis of these kidneys were performed to evaluate cell death, inflammation and oxidative stress. Kidney function was evaluated by measuring the blood levels of creatinine and urea. RESULTS: The results demonstrate that hypoxia increases the ADMSCs capacity to secrete EVs that trigger different energy supply, antiapoptotic, immunomodulatory, angiogenic and anti-oxidative stress responses in renal tissue compared with EVs secreted in normoxia. Proteomic analyses of renal tubule cells treated with EVs from ADMSCs in normoxia and hypoxia give a specific signature of modulated proteins for each type of EVs, indicating regulation of distinct biological processes. CONCLUSION: In summary, hypoxia potentially offers an interesting strategy to enhance the properties of EVs in the treatment of acute kidney disease.


Asunto(s)
Lesión Renal Aguda/terapia , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión/terapia , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Tejido Adiposo/citología , Animales , Hipoxia de la Célula , Línea Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Células Madre Mesenquimatosas/citología , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
17.
Exp Parasitol ; 196: 1-11, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30476495

RESUMEN

As the tachyzoite form of Toxoplasma gondii divides inside the parasitophorous vacuole, the daughter cells remain attached to each other at the posterior end through the so-called residual body (RB). Here, we studied this process using field emission scanning electron microscopy of dry scraped infected cells, transmission electron microscopy of random ultrathin sections, X-ray microanalysis, and 3-D modelling of tomographic volumes and slice and view series obtained by FIB SEM at 7, 24, and 48 h post infection. Combining these methods of observation, we traced a timeline of events for the formation, development, and fate of the RB. The RB is formed as the first endodyogenic division is complete. Before that, finger-like invaginations at the posterior end of the tachyzoite secrete tubules from the intravacuolar network. The RB is roughly spherical and measures 1 µm in diameter at random. Its size does not vary considerably as the division cycles that form the rosette proceed. The contents of the RB are similar to the cytoplasm of the parasites. It contains ER membranous profiles and vacuolar structures identified as acidocalcisomes. This was confirmed by microanalysis. Mitochondrial profiles seen inside the RB are actually branches of mother cell mitochondrion not yet split between the two daughter cells. Acidocalcisomes of a mother cell are distributed between the two daughter cells, but as the rosette of parasites grow, acidocalcisomes seem to concentrate inside the RB where they are usually larger and tend to fuse to each other, filling most of the space in the RB. Here we hypothesize that, upon egress, the acidocalcisomes would ultimately fuse with the RB membrane liberating its contents inside the parasitophorous vacuole (PV) and, by doing so; the RB would disintegrate, releasing its contents in the PV.


Asunto(s)
Toxoplasma/crecimiento & desarrollo , Toxoplasma/ultraestructura , Animales , Línea Celular , Microanálisis por Sonda Electrónica , Imagenología Tridimensional , Macaca mulatta , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Nanotubos/ultraestructura , Pase Seriado
18.
J Cell Sci ; 128(12): 2363-73, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25964650

RESUMEN

The contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease, collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress; it also has a role in cell shrinking after hyperosmotic stress. Here, we report that, in addition to its role in osmoregulation, the CVC of T. cruzi has a role in the biogenesis of acidocalcisomes. Expression of dominant-negative mutants of the CVC-located small GTPase Rab32 (TcCLB.506289.80) results in lower numbers of less-electron-dense acidocalcisomes, lower content of polyphosphate, lower capacity for acidocalcisome acidification and Ca(2+) uptake that is driven by the vacuolar proton pyrophosphatase and the Ca(2+)-ATPase, respectively, as well as less-infective parasites, revealing the role of this organelle in parasite infectivity. By using fluorescence, electron microscopy and electron tomography analyses, we provide further evidence of the active contact of acidocalcisomes with the CVC, indicating an active exchange of proteins between the two organelles.


Asunto(s)
Ácidos/metabolismo , Calcio/metabolismo , Enfermedad de Chagas/parasitología , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/patogenicidad , Animales , Western Blotting , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/citología , Fibroblastos/parasitología , Técnica del Anticuerpo Fluorescente , Prepucio/citología , Humanos , Técnicas para Inmunoenzimas , Masculino , Microscopía Electrónica , Mioblastos/citología , Mioblastos/parasitología , Osmorregulación/fisiología , Proteínas Protozoarias/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacuolas/metabolismo , Células Vero , Equilibrio Hidroelectrolítico
19.
J Struct Biol ; 194(2): 171-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26882843

RESUMEN

In the course of their intraerythrocytic development, malaria parasites incorporate and degrade massive amounts of the host cell cytoplasm. This mechanism is essential for parasite development and represents a physiological step used as target for many antimalarial drugs; nevertheless, the fine mechanisms underlying these processes in Plasmodium species are still under discussion. Here, we studied the events of hemoglobin uptake and hemozoin nucleation in the different stages of the intraerythrocytic cycle of the murine malaria parasite Plasmodium chabaudi using transmission electron tomography of cryofixed and freeze-substituted cells. The results showed that hemoglobin uptake in P. chabaudi starts at the early ring stage and is present in all developmental stages, including the schizont stage. Hemozoin nucleation occurs near the membrane of small food vacuoles. At the trophozoite stage, food vacuoles are found closely localized to cytostomal tubes and mitochondria, whereas in the schizont stage, we observed a large food vacuole located in the central portion of the parasite. Taken together, these results provide new insights into the mechanisms of hemoglobin uptake and degradation in rodent malaria parasites.


Asunto(s)
Hemoproteínas/metabolismo , Hemoglobinas/metabolismo , Estadios del Ciclo de Vida/fisiología , Plasmodium chabaudi/metabolismo , Vacuolas/metabolismo , Animales , Transporte Biológico , Tomografía con Microscopio Electrónico , Eritrocitos/metabolismo , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Hemoproteínas/ultraestructura , Hemoglobinas/ultraestructura , Procesamiento de Imagen Asistido por Computador , Malaria/parasitología , Masculino , Ratones , Plasmodium chabaudi/crecimiento & desarrollo , Plasmodium chabaudi/ultraestructura , Proteolisis , Vacuolas/ultraestructura
20.
Cell Microbiol ; 17(3): 389-407, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25287304

RESUMEN

The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-ß) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.


Asunto(s)
Candida albicans/química , Candida albicans/inmunología , Factores Inmunológicos/química , Factores Inmunológicos/inmunología , Vesículas Secretoras/química , Vesículas Secretoras/inmunología , Animales , Antígenos Fúngicos/análisis , Antígenos Fúngicos/química , Antígenos Fúngicos/inmunología , Candida albicans/citología , Células Cultivadas , Cromatografía en Capa Delgada , Células Dendríticas/metabolismo , Endocitosis , Proteínas Fúngicas/análisis , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Interleucina-12/metabolismo , Lípidos/análisis , Macrófagos/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Peso Molecular , Óxido Nítrico/metabolismo , Proteoma/análisis , Vesículas Secretoras/ultraestructura , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA