Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 46: 101-121, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36854317

RESUMEN

Astrocyte endfeet enwrap the entire vascular tree within the central nervous system, where they perform important functions in regulating the blood-brain barrier (BBB), cerebral blood flow, nutrient uptake, and waste clearance. Accordingly, astrocyte endfeet contain specialized organelles and proteins, including local protein translation machinery and highly organized scaffold proteins, which anchor channels, transporters, receptors, and enzymes critical for astrocyte-vascular interactions. Many neurological diseases are characterized by the loss of polarization of specific endfoot proteins, vascular dysregulation, BBB disruption, altered waste clearance, or, in extreme cases, loss of endfoot coverage. A role for astrocyte endfeet has been demonstrated or postulated in many of these conditions. This review provides an overview of the development, composition, function, and pathological changes of astrocyte endfeet and highlights the gaps in our knowledge that future research should address.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Astrocitos/fisiología , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central , Biosíntesis de Proteínas , Encéfalo/patología
2.
Stroke ; 54(6): e251-e271, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37009740

RESUMEN

BACKGROUND: Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS: Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS: The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS: These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Estados Unidos , Humanos , American Heart Association , Accidente Cerebrovascular/terapia , Encéfalo , Cognición
3.
Am J Physiol Heart Circ Physiol ; 321(6): H1030-H1041, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623177

RESUMEN

The "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction (AMI) but tissue perfusion is not restored, is associated with worse outcome. The mechanism of no reflow is unknown. We hypothesized that pericytes contraction, in an attempt to maintain a constant capillary hydrostatic pressure during reduced coronary perfusion pressure, causes capillary constriction leading to no reflow and that this effect is mediated through the orphan receptor, GPR39, present in pericytes. We created AMI (coronary occlusion followed by reperfusion) in GPR39 knock out mice and littermate controls. In a separate set of experiments, we treated wild-type mice undergoing coronary occlusion with vehicle or VC43, a specific inhibitor of GPR39, before reperfusion. We found that no reflow zones were significantly smaller in the GPR39 knockouts compared with controls. Both no reflow and infarct size were also markedly smaller in animals treated with VC43 compared with vehicle. Immunohistochemistry revealed greater capillary density and larger capillary diameter at pericyte locations in the GPR39-knockout and VC43-treated mice compared with controls. We conclude that GPR39-mediated pericyte contraction during reduced coronary perfusion pressure causes capillary constriction resulting in no reflow during AMI and that smaller no reflow zones in GPR39-knockout and VC43-treated animals are associated with smaller infarct sizes. These results elucidate the mechanism of no reflow in AMI, as well as providing a therapeutic pathway for the condition.NEW & NOTEWORTHY The mechanism of "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction but tissue perfusion is not restored, is unknown. This condition is associated with worse outcome. Here, we show that GPR39-mediated pericyte contraction during reduced coronary perfusion pressure causes capillary constriction resulting in no reflow. Smaller no-reflow zones in GPR39-knockout animals and those treated with a GPR39 inhibitor are associated with smaller infarct size. These results could have important therapeutic implications.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Fenómeno de no Reflujo/prevención & control , Pericitos/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Vasoconstricción/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Fenómeno de no Reflujo/metabolismo , Fenómeno de no Reflujo/fisiopatología , Pericitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Nature ; 508(7494): 55-60, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24670647

RESUMEN

Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke.


Asunto(s)
Capilares/citología , Circulación Cerebrovascular/fisiología , Pericitos/fisiología , Animales , Arteriolas/fisiología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Isquemia Encefálica/patología , Capilares/efectos de los fármacos , Muerte Celular , Cerebelo/irrigación sanguínea , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Circulación Cerebrovascular/efectos de los fármacos , Dinoprostona/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Neuroimagen Funcional , Ácido Glutámico/farmacología , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Pericitos/citología , Pericitos/efectos de los fármacos , Pericitos/patología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glutamato/metabolismo , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/patología , Vasoconstricción , Vasodilatación/efectos de los fármacos
5.
Am J Physiol Heart Circ Physiol ; 317(2): H255-H263, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125259

RESUMEN

Capillary derecruitment distal to a coronary stenosis is implicated as the mechanism of reversible perfusion defect and potential myocardial ischemia during coronary hyperemia; however, the underlying mechanisms are not defined. We tested whether pericyte constriction underlies capillary derecruitment during hyperemia under conditions of stenosis. In vivo two-photon microscopy (2PM) and optical microangiography (OMAG) were used to measure hyperemia-induced changes in capillary diameter and perfusion in wild-type and pericyte-depleted mice with femoral artery stenosis. OMAG demonstrated that hyperemic challenge under stenosis produced capillary derecruitment associated with decreased RBC flux. 2PM demonstrated that hyperemia under control conditions induces 26 ± 5% of capillaries to dilate and 19 ± 3% to constrict. After stenosis, the proportion of capillaries dilating to hyperemia decreased to 14 ± 4% (P = 0.05), whereas proportion of constricting capillaries increased to 32 ± 4% (P = 0.05). Hyperemia-induced changes in capillary diameter occurred preferentially in capillary segments invested with pericytes. In a transgenic mouse model featuring partial pericyte depletion, only 14 ± 3% of capillaries constricted to hyperemic challenge after stenosis, a significant reduction from 33 ± 4% in wild-type littermate controls (P = 0.04). These results provide for the first time direct visualization of hyperemia-induced capillary derecruitment distal to arterial stenosis and demonstrate that pericyte constriction underlies this phenomenon in vivo. These results could have important therapeutic implications in the treatment of exercise-induced ischemia. NEW & NOTEWORTHY In the setting of coronary arterial stenosis, hyperemia produces a reversible perfusion defect resulting from capillary derecruitment that is believed to underlie cardiac ischemia under hyperemic conditions. We use optical microangiography and in vivo two-photon microscopy to visualize capillary derecruitment distal to a femoral arterial stenosis with cellular resolution. We demonstrate that capillary constriction in response to hyperemia in the setting of stenosis is dependent on pericytes, contractile mural cells investing the microcirculation.


Asunto(s)
Capilares/fisiopatología , Arteria Femoral/fisiopatología , Músculo Grácil/irrigación sanguínea , Hiperemia/fisiopatología , Pericitos/patología , Enfermedad Arterial Periférica/fisiopatología , Vasoconstricción , Angiografía , Animales , Constricción Patológica , Modelos Animales de Enfermedad , Femenino , Arteria Femoral/cirugía , Hiperemia/metabolismo , Hiperemia/patología , Ligadura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Mutación , Pericitos/metabolismo , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/patología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Flujo Sanguíneo Regional , Vasodilatación
6.
J Physiol ; 595(6): 1885-1902, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27619153

RESUMEN

Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+ -dependent signalling pathways such as K+ release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals.


Asunto(s)
Astrocitos/fisiología , Acoplamiento Neurovascular/fisiología , Animales , Vasos Sanguíneos/fisiología , Encéfalo/fisiología , Humanos , Sinapsis/fisiología
8.
Proc Natl Acad Sci U S A ; 108(43): 17827-31, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22006332

RESUMEN

Neurovascular coupling is a process through which neuronal activity leads to local increases in blood flow in the central nervous system. In brain slices, 100% O(2) has been shown to alter neurovascular coupling, suppressing activity-dependent vasodilation. However, in vivo, hyperoxia reportedly has no effect on blood flow. Resolving these conflicting findings is important, given that hyperoxia is often used in the clinic in the treatment of both adults and neonates, and a reduction in neurovascular coupling could deprive active neurons of adequate nutrients. Here we address this issue by examining neurovascular coupling in both ex vivo and in vivo rat retina preparations. In the ex vivo retina, 100% O(2) reduced light-evoked arteriole vasodilations by 3.9-fold and increased vasoconstrictions by 2.6-fold. In vivo, however, hyperoxia had no effect on light-evoked arteriole dilations or blood velocity. Oxygen electrode measurements showed that 100% O(2) raised pO(2) in the ex vivo retina from 34 to 548 mm Hg, whereas hyperoxia has been reported to increase retinal pO(2) in vivo to only ~53 mm Hg [Yu DY, Cringle SJ, Alder VA, Su EN (1994) Am J Physiol 267:H2498-H2507]. Replicating the hyperoxic in vivo pO(2) of 53 mm Hg in the ex vivo retina did not alter vasomotor responses, indicating that although O(2) can modulate neurovascular coupling when raised sufficiently high, the hyperoxia-induced rise in retinal pO(2) in vivo is not sufficient to produce a modulatory effect. Our findings demonstrate that hyperoxia does not alter neurovascular coupling in vivo, ensuring that active neurons receive an adequate supply of nutrients.


Asunto(s)
Hipoxia de la Célula/fisiología , Oxígeno/metabolismo , Neuronas Retinianas/metabolismo , Vasos Retinianos/metabolismo , Vasoconstricción/fisiología , Vasodilatación/fisiología , Animales , Masculino , Microelectrodos , Presión Parcial , Estimulación Luminosa , Ratas , Ratas Long-Evans , Transducción de Señal/fisiología , Estadísticas no Paramétricas
9.
Artículo en Inglés | MEDLINE | ID: mdl-38316553

RESUMEN

Astrocytes play an important role in controlling microvascular diameter and regulating local cerebral blood flow (CBF) in several physiological and pathological scenarios. Neurotransmitters released from active neurons evoke Ca2+ increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid (AA) from astrocyte endfeet. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels while 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K+ from astrocyte endfeet also contributes to vasodilation or constriction in a concentration-dependent manner. Whether astrocytes exert a vasodilation or vasoconstriction depends on the local microenvironment, including the metabolic status, the concentration of Ca2+ reached in the endfoot, and the resting vascular tone. Astrocytes also contribute to the generation of steady-state vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone, whereas tone-dependent elevations in endfoot Ca2+ produce tonic prostaglandin dilators to limit the degree of constriction. Under pathological conditions, including Alzheimer's disease, epilepsy, stroke, and diabetes, disruption of normal astrocyte physiology can compromise the regulation of blood flow, with negative consequences for neurological function.


Asunto(s)
Astrocitos , Circulación Cerebrovascular , Astrocitos/metabolismo , Circulación Cerebrovascular/fisiología , Neuronas , Prostaglandinas/metabolismo
10.
JACC Basic Transl Sci ; 8(2): 204-220, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36908667

RESUMEN

Pericytes contract during myocardial ischemia resulting in capillary constriction and no reflow. Reversing pericyte contraction pharmacologically reduces no reflow and infarct size. These findings open up an entire new venue of research aimed at altering pericyte function in myocardial ischemia and infarction.

11.
bioRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873342

RESUMEN

Chronic demyelination is theorized to contribute to neurodegeneration and drive progressive disability in demyelinating diseases like multiple sclerosis. Here, we describe two genetic mouse models of inducible demyelination, one distinguished by effective remyelination, and the other by remyelination failure and persistent demyelination. By comparing these two models, we find that remyelination protects neurons from apoptosis, improves conduction, and promotes functional recovery. Chronic demyelination of neurons leads to activation of the mitogen-associated protein kinase (MAPK) stress pathway downstream of dual leucine zipper kinase (DLK), which ultimately induces the phosphorylation of c-Jun in the nucleus. Both pharmacological inhibition and CRISPR/Cas9-mediated disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. These findings provide direct experimental evidence that remyelination is neuroprotective and identify DLK inhibition as a potential therapeutic strategy to protect chronically demyelinated neurons.

12.
Methods Mol Biol ; 2492: 3-24, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733036

RESUMEN

The brain is endowed with highly specialized vasculature that is both structurally and functionally unique compared to vasculature supplying peripheral organs. The blood-brain barrier (BBB) is formed by endothelial cells of the cerebral vasculature and prevents extravasation of blood products into the brain to protect neural tissue and maintain a homeostatic environment. The BBB functions as part of the neurovascular unit (NVU), which is composed of neurons, astrocytes, and microglia in addition to the specialized endothelial cells, mural cells, and the basement membrane. Through coordinated intercellular signaling, these cells function as a dynamic unit to tightly regulate brain blood flow, vascular function, neuroimmune responses, and waste clearance. In this chapter, we review the functions of individual NVU components, describe neurovascular coupling as a classic example of NVU function, and discuss archetypal NVU pathophysiology during disease.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Astrocitos/fisiología , Transporte Biológico , Barrera Hematoencefálica/fisiología , Encéfalo , Células Endoteliales/fisiología
13.
Neurophotonics ; 9(3): 031913, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35558646

RESUMEN

Significance: Neurovascular coupling (NVC) is the process that increases cerebral blood flow in response to neuronal activity. NVC is orchestrated by signaling between neurons, glia, and vascular cells. Elucidating the mechanisms underlying NVC at different vascular segments and in different brain regions is imperative for understanding of brain function and mechanisms of dysfunction. Aim: Our goal is to describe a protocol for concurrently monitoring stimulation-evoked neuronal activity and resultant vascular responses in acute brain slices. Approach: We describe a step-by-step protocol that allows the study of endogenous NVC mechanisms engaged by neuronal activity in a controlled, reduced preparation. Results: This ex vivo NVC assay allows researchers to disentangle the mechanisms regulating the contractile responses of different vascular segments in response to neuronal firing independent of flow and pressure mediated effects from connected vessels. It also enables easy pharmacological manipulations in a simplified, reduced system and can be combined with Ca 2 + imaging or broader electrophysiology techniques to obtain multimodal data during NVC. Conclusions: The ex vivo NVC assay will facilitate investigations of cellular and molecular mechanisms that give rise to NVC and should serve as a valuable complement to in vivo imaging methods.

14.
Int J Biol Macromol ; 196: 63-71, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34896473

RESUMEN

This study aimed to investigate the effect of atmospheric pressure non-thermal pin-to-plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of starch treated. The isolated mango seed kernel starch was subjected to the plasma treatment of input voltages 170 and 230 V for 15 and 30 min of exposure. Water adsorption, swelling, and solubility at lower temperatures. There has been a significant reduction (p < 0.05) in pH values of starch from 7.09 to 6.16 and also the desirable reduction in turbidity values by 42.60%. However, there has been no significant change in the oil and water binding behavior of the starch. The FTIR spectra of MSKS demonstrate the formation of amines which contributes to the better hydrophilic nature of the starch. The structural modification has been adequately confirmed by SEM images. The maximum voltage and time combination, lead to depolymerization of starch which is supported by NMR spectra thus affecting thermal and rheological properties. The application of cold plasma-modified MSKS in food would facilitate stable and smooth textural development.


Asunto(s)
Fenómenos Químicos/efectos de los fármacos , Mangifera/química , Gases em Plasma/química , Gases em Plasma/farmacología , Reología/efectos de los fármacos , Semillas/química , Almidón/química , Análisis Espectral , Almidón/aislamiento & purificación
15.
Metabolites ; 12(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36144230

RESUMEN

There is now a convincing body of evidence from observational studies that the majority of modifiable Alzheimer's disease and related dementia (ADRD) risk factors are vascular in nature. In addition, the co-existence of cerebrovascular disease with AD is more common than AD alone, and conditions resulting in brain ischemia likely promote detrimental effects of AD pathology. Oxylipins are a class of bioactive lipid mediators derived from the oxidation of long-chain polyunsaturated fatty acids (PUFAs) which act as modulators of both vascular tone and inflammation. In vascular cognitive impairment (VCI), there is emerging evidence that oxylipins may have both protective and detrimental effects on brain structure, cognitive performance, and disease progression. In this review, we focus on oxylipin relationships with vascular and inflammatory risk factors in human studies and animal models pertinent to ADRD. In addition, we discuss future research directions with the potential to impact the trajectory of ADRD risk and disease progression.

16.
Front Cell Dev Biol ; 9: 702832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327206

RESUMEN

Neurovascular coupling is a crucial mechanism that matches the high energy demand of the brain with a supply of energy substrates from the blood. Signaling within the neurovascular unit is responsible for activity-dependent changes in cerebral blood flow. The strength and reliability of neurovascular coupling form the basis of non-invasive human neuroimaging techniques, including blood oxygen level dependent (BOLD) functional magnetic resonance imaging. Interestingly, BOLD signals are negative in infants, indicating a mismatch between metabolism and blood flow upon neural activation; this response is the opposite of that observed in healthy adults where activity evokes a large oversupply of blood flow. Negative neurovascular coupling has also been observed in rodents at early postnatal stages, further implying that this is a process that matures during development. This rationale is consistent with the morphological maturation of the neurovascular unit, which occurs over a similar time frame. While neurons differentiate before birth, astrocytes differentiate postnatally in rodents and the maturation of their complex morphology during the first few weeks of life links them with synapses and the vasculature. The vascular network is also incomplete in neonates and matures in parallel with astrocytes. Here, we review the timeline of the structural maturation of the neurovascular unit with special emphasis on astrocytes and the vascular tree and what it implies for functional maturation of neurovascular coupling. We also discuss similarities between immature astrocytes during development and reactive astrocytes in disease, which are relevant to neurovascular coupling. Finally, we close by pointing out current gaps in knowledge that must be addressed to fully elucidate the mechanisms underlying neurovascular coupling maturation, with the expectation that this may also clarify astrocyte-dependent mechanisms of cerebrovascular impairment in neurodegenerative conditions in which reduced or negative neurovascular coupling is noted, such as stroke and Alzheimer's disease.

17.
Philos Trans R Soc Lond B Biol Sci ; 376(1815): 20190630, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33190598

RESUMEN

Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.


Asunto(s)
Astrocitos/fisiología , Células Endoteliales/fisiología , Imagen por Resonancia Magnética , Miocitos del Músculo Liso/fisiología , Neuronas/fisiología , Pericitos/fisiología , Animales , Hemodinámica , Humanos , Imagen por Resonancia Magnética/estadística & datos numéricos
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1815): 20190622, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33190600

RESUMEN

Functional neuroimaging using MRI relies on measurements of blood oxygen level-dependent (BOLD) signals from which inferences are made about the underlying neuronal activity. This is possible because neuronal activity elicits increases in blood flow via neurovascular coupling, which gives rise to the BOLD signal. Hence, an accurate interpretation of what BOLD signals mean in terms of neural activity depends on a full understanding of the mechanisms that underlie the measured signal, including neurovascular and neurometabolic coupling, the contribution of different cell types to local signalling, and regional differences in these mechanisms. Furthermore, the contributions of systemic functions to cerebral blood flow may vary with ageing, disease and arousal states, with regard to both neuronal and vascular function. In addition, recent developments in non-invasive imaging technology, such as high-field fMRI, and comparative inter-species analysis, allow connections between non-invasive data and mechanistic knowledge gained from invasive cellular-level studies. Considered together, these factors have immense potential to improve BOLD signal interpretation and bring us closer to the ultimate purpose of decoding the mechanisms of human cognition. This theme issue covers a range of recent advances in these topics, providing a multidisciplinary scientific and technical framework for future work in the neurovascular and cognitive sciences. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.


Asunto(s)
Neuroimagen Funcional/estadística & datos numéricos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Neuronas/fisiología , Neuroimagen Funcional/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación
19.
Front Cell Neurosci ; 15: 762843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819839

RESUMEN

Neurovascular coupling, the process by which neuronal activity elicits increases in the local blood supply, is impaired in stroke patients in brain regions outside the infarct. Such impairment may contribute to neurological deterioration over time, but its mechanism is unknown. Using the middle cerebral artery occlusion (MCAO) model of stroke, we show that neuronal activity-evoked capillary dilation is reduced by ∼75% in the intact cortical tissue outside the infarct border. This decrease in capillary responsiveness was not explained by a decrease in local neuronal activity or a loss of vascular contractility. Inhibiting synthesis of the vasoconstrictive molecule 20-hydroxyeicosatetraenoic acid (20-HETE), either by inhibiting its synthetic enzyme CYP450 ω-hydroxylases or by increasing nitric oxide (NO), which is a natural inhibitor of ω-hydroxylases, rescued activity-evoked capillary dilation. The capillary dilation unmasked by inhibiting 20-HETE was dependent on PGE2 activation of endoperoxide 4 (EP4) receptors, a vasodilatory pathway previously identified in healthy animals. Cortical 20-HETE levels were increased following MCAO, in agreement with data from stroke patients. Inhibition of ω-hydroxylases normalized 20-HETE levels in vivo and increased cerebral blood flow in the peri-infarct cortex. These data identify 20-HETE-dependent vasoconstriction as a mechanism underlying capillary neurovascular coupling impairment after stroke. Our results suggest that the brain's energy supply may be significantly reduced after stroke in regions previously believed to be asymptomatic and that ω-hydroxylase inhibition may restore healthy neurovascular coupling post-stroke.

20.
Nat Commun ; 12(1): 1274, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627658

RESUMEN

High-throughput single-cell epigenomic assays can resolve cell type heterogeneity in complex tissues, however, spatial orientation is lost. Here, we present single-cell combinatorial indexing on Microbiopsies Assigned to Positions for the Assay for Transposase Accessible Chromatin, or sciMAP-ATAC, as a method for highly scalable, spatially resolved, single-cell profiling of chromatin states. sciMAP-ATAC produces data of equivalent quality to non-spatial sci-ATAC and retains the positional information of each cell within a 214 micron cubic region, with up to hundreds of tracked positions in a single experiment. We apply sciMAP-ATAC to assess cortical lamination in the adult mouse primary somatosensory cortex and in the human primary visual cortex, where we produce spatial trajectories and integrate our data with non-spatial single-nucleus RNA and other chromatin accessibility single-cell datasets. Finally, we characterize the spatially progressive nature of cerebral ischemic infarction in the mouse brain using a model of transient middle cerebral artery occlusion.


Asunto(s)
Encéfalo/metabolismo , Cromatina/metabolismo , Animales , Isquemia Encefálica/metabolismo , Núcleo Celular/metabolismo , Femenino , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA