Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33296687

RESUMEN

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Eritroides/patología , Megacariocitos/fisiología , Células Plasmáticas/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Circulación Sanguínea , COVID-19/inmunología , Células Cultivadas , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Proteómica , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual
2.
Nature ; 594(7862): 265-270, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040261

RESUMEN

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Asunto(s)
Cadena de Bloques , Toma de Decisiones Clínicas/métodos , Confidencialidad , Conjuntos de Datos como Asunto , Aprendizaje Automático , Medicina de Precisión/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Leucemia/diagnóstico , Leucemia/patología , Leucocitos/patología , Enfermedades Pulmonares/diagnóstico , Aprendizaje Automático/tendencias , Masculino , Programas Informáticos , Tuberculosis/diagnóstico
3.
Proc Natl Acad Sci U S A ; 119(33): e2208106119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939692

RESUMEN

Massive rotator cuff tears (MRCTs) of the shoulder cause disability and pain among the adult population. In chronic injuries, the tendon retraction and subsequently the loss of mechanical load lead to muscle atrophy, fat accumulation, and fibrosis formation over time. The intrinsic repair mechanism of muscle and the successful repair of the torn tendon cannot reverse the muscle degeneration following MRCTs. To address these limitations, we developed an electroconductive matrix by incorporating graphene nanoplatelets (GnPs) into aligned poly(l-lactic acid) (PLLA) nanofibers. This study aimed to understand 1) the effects of GnP matrices on muscle regeneration and inhibition of fat formation in vitro and 2) the ability of GnP matrices to reverse muscle degenerative changes in vivo following an MRCT. The GnP matrix significantly increased myotube formation, which can be attributed to enhanced intracellular calcium ions in myoblasts. Moreover, the GnP matrix suppressed adipogenesis in adipose-derived stem cells. These results supported the clinical effects of the GnP matrix on reducing fat accumulation and muscle atrophy. The histological evaluation showed the potential of the GnP matrix to reverse muscle atrophy, fat accumulation, and fibrosis in both supraspinatus and infraspinatus muscles at 24 and 32 wk after the chronic MRCTs of the rat shoulder. The pathological evaluation of internal organs confirmed the long-term biocompatibility of the GnP matrix. We found that reversing muscle degenerative changes improved the morphology and tensile properties of the tendon compared with current surgical techniques. The long-term biocompatibility and the ability of the GnP matrix to treat muscle degeneration are promising for the realization of MRCT healing and regeneration.


Asunto(s)
Grafito , Músculo Esquelético , Atrofia Muscular , Nanopartículas , Lesiones del Manguito de los Rotadores , Animales , Fibrosis , Grafito/uso terapéutico , Músculo Esquelético/fisiología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Ratas , Ratas Sprague-Dawley , Regeneración , Lesiones del Manguito de los Rotadores/complicaciones , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Hombro
4.
Proteins ; 92(4): 540-553, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037760

RESUMEN

Preliminary studies have shown BRCA1 (170-1600) residues to be intrinsically disordered with unknown structural details. However, thousands of clinically reported variants have been identified in this central region of BRCA1. Therefore, we aimed to characterize h-BRCA1(260-553) to assess the structural basis for pathogenicity of two rare missense variants Ser282Leu, Gln356Arg identified from the Indian and Russian populations respectively. Small-angle X-ray scattering analysis revealed WT scores Rg -32 Å, Dmax -93 Å, and Rflex-51% which are partially disordered, whereas Ser282Leu variant displayed a higher degree of disorderedness and Gln356Arg was observed to be aggregated. WT protein also possesses an inherent propensity to undergo a disorder-to-order transition in the presence of cruciform DNA and 2,2,2-Trifluoroethanol (TFE). An increased alpha-helical pattern was observed with increasing concentration of TFE for the Gln356Arg mutant whereas Ser282Leu mutant showed significant differences only at the highest TFE concentration. Furthermore, higher thermal shift was observed for WT-DNA complex compared to the Gln356Arg and Ser282Leu protein-DNA complex. Moreover, mature amyloid-like fibrils were observed with 30 µM thioflavin T (ThT) at 37°C for Ser282Leu and Gln356Arg proteins while the WT protein exists in a protofibril state as observed by TEM. Gln356Arg formed higher-order aggregates with amyloidogenesis over time as monitored by ThT fluorescence. In addition, computational analyses confirmed larger conformational fluctuations for Ser282Leu and Gln356Arg mutants than for the WT. The global structural alterations caused by these variants provide a mechanistic approach for further classification of the variants of uncertain clinical significance in BRCA1 into amyloidogenic variants which may have a significant role in disease pathogenesis.


Asunto(s)
Amiloide , Mutación Missense , ADN
5.
J Pharmacol Exp Ther ; 388(2): 484-494, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37474260

RESUMEN

Sulfur mustard (SM), a vesicating agent first used during World War I, remains a potent threat as a chemical weapon to cause intentional/accidental chemical emergencies. Eyes are extremely susceptible to SM toxicity. Nitrogen mustard (NM), a bifunctional alkylating agent and potent analog of SM, is used in laboratories to study mustard vesicant-induced ocular toxicity. Previously, we showed that SM-/NM-induced injuries (in vivo and ex vivo rabbit corneas) are reversed upon treatment with dexamethasone (DEX), a US Food and Drug Administration-approved, steroidal anti-inflammatory drug. Here, we optimized NM injuries in ex vivo human corneas and assessed DEX efficacy. For injury optimization, one cornea (randomly selected from paired eyes) was exposed to NM: 100 nmoles for 2 hours or 4 hours, and 200 nmoles for 2 hours, and the other cornea served as a control. Injuries were assessed 24 hours post NM-exposure. NM 100 nmoles exposure for 2 hours was found to cause optimal corneal injury (epithelial thinning [∼69%]; epithelial-stromal separation [6-fold increase]). In protein arrays studies, 24 proteins displayed ≥40% change in their expression in NM exposed corneas compared with controls. DEX administration initiated 2 hours post NM exposure and every 8 hours thereafter until 24 hours post-exposure reversed NM-induced corneal epithelial-stromal separation [2-fold decrease]). Of the 24 proteins dysregulated upon NM exposure, six proteins (delta-like canonical Notch ligand 1, FGFbasic, CD54, CCL7, endostatin, receptor tyrosine-protein kinase erbB-4) associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, showed significant reversal upon DEX treatment (Student's t test; P ≤ 0.05). Complementing our animal model studies, DEX was shown to mitigate vesicant-induced toxicities in ex vivo human corneas. SIGNIFICANCE STATEMENT: Nitrogen mustard (NM) exposure-induced injuries were optimized in an ex vivo human cornea culture model and studies were carried out at 24 h post 100 nmoles NM exposure. Dexamethasone (DEX) administration (started 2 h post NM exposure and every 8 h thereafter) reversed NM-induced corneal injuries. Molecular mediators of DEX action were associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, indicating DEX aids wound healing via reversing vesicant-induced neovascularization (delta-like canonical Notch ligand 1 and FGF basic) and leukocyte infiltration (CD54 and CCL7).


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Humanos , Conejos , Mecloretamina/toxicidad , Irritantes/efectos adversos , Sustancias para la Guerra Química/toxicidad , Ligandos , Córnea , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Gas Mostaza/toxicidad , Dexametasona/farmacología , Dexametasona/uso terapéutico
6.
J Pharmacol Exp Ther ; 388(2): 469-483, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37316330

RESUMEN

Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Conejos , Gas Mostaza/toxicidad , Gas Mostaza/metabolismo , Córnea , Sustancias para la Guerra Química/toxicidad , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Dexametasona/farmacología
7.
Mol Carcinog ; 63(6): 1188-1204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506376

RESUMEN

Recent preclinical studies have shown that the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin and naproxen could be an effective intervention strategy against TMPRSS2-ERG fusion-driven prostate tumorigenesis. Herein, as a follow-up mechanistic study, employing TMPRSS2-ERG (fusion) positive tumors and plasma from TMPRSS2-ERG. Ptenflox/flox mice, we profiled the stage specific proteomic changes (focused on inflammatory circulating and prostate tissue/tumor-specific cytokines, chemokines, and growth factors/growth signaling-associated molecules) that contribute to prostate cancer (PCa) growth and progression in the TMPRSS2-ERG fusion-driven mouse model of tumorigenesis. In addition, the association of the protective effects of NSAIDs (aspirin 1400 ppm and naproxen 400 ppm) with the modulation of these specific molecular pathways was determined. A sandwich Elisa based membrane array-proteome profiler identifying 111 distinct signaling molecules was employed. Overall, the plasma and prostate tissue sample analyses identified 54 significant and differentially expressed cytokines, chemokines, and growth factors/growth signaling-associated molecules between PCa afflicted mice (TMPRSS2-ERG. Ptenflox/flox, age-matched noncancerous controls, NSAIDs-supplemented and no-drug controls). Bioinformatic analysis of the array outcomes indicated that the protective effect of NSAIDs was associated with reduced expression of (a) tumor promoting inflammatory molecules (M-CSF, IL-33, CCL22, CCL12, CX3CL1, CHI3L1, and CD93), (b) growth factors- growth signaling-associated molecules (Chemerin, FGF acidic, Flt-3 ligand, IGFBP-5, and PEDF), and (c) tumor microenvironment/stromal remodeling proteins MMP2 and MMP9. Overall, our findings corroborate the pathological findings that protective effects of NSAIDs in TMPSS2-ERG fusion-driven prostate tumorigenesis are associated with antiproliferative and anti-inflammatory effects and possible modulation of the immune cell enriched microenvironment.


Asunto(s)
Antiinflamatorios no Esteroideos , Aspirina , Naproxeno , Neoplasias de la Próstata , Animales , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Ratones , Naproxeno/farmacología , Proteómica/métodos , Inflamación/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Próstata/patología , Próstata/metabolismo , Próstata/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteoma/metabolismo , Humanos , Citocinas/metabolismo , Citocinas/sangre
8.
J Virol ; 97(5): e0005423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133376

RESUMEN

The porcine reproductive and respiratory syndrome viruses (PRRSV) led to a global panzootic and huge economical losses to the pork industry. PRRSV targets the scavenger receptor CD163 for productive infection. However, currently no effective treatment is available to control the spread of this disease. Using bimolecular fluorescence complementation (BiFC) assays, we screened a set of small molecules potentially targeting the scavenger receptor cysteine-rich domain 5 (SRCR5) of CD163. We found that the assay examining protein-protein interactions (PPI) between PRRSV glycoprotein 4 (GP4) and the CD163-SRCR5 domain mainly identifies compounds that potently inhibit PRRSV infection, while examining the PPI between PRRSV-GP2a and the SRCR5 domain maximized the identification of positive compounds, including additional ones with various antiviral capabilities. These positive compounds significantly inhibited both types 1 and 2 PRRSV infection of porcine alveolar macrophages. We confirmed that the highly active compounds physically bind to the CD163-SRCR5 protein, with dissociation constant (KD) values ranging from 28 to 39 µM. Structure-activity-relationship (SAR) analysis revealed that although both the 3-(morpholinosulfonyl)anilino and benzenesulfonamide moieties in these compounds are critical for the potency to inhibit PRRSV infection, the morpholinosulfonyl group can be replaced by chlorine substituents without significant loss of antiviral potency. Our study established a system for throughput screening of natural or synthetic compounds highly effective on blocking of PRRSV infection and shed light on further SAR modification of these compounds. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Current vaccines cannot provide cross protection against different strains, and there are no effective treatments available to hamper the spread of this disease. In this study, we identified a group of new small molecules that can inhibit the PRRSV interaction with its specific receptor CD163 and dramatically block the infection of both types 1 and type 2 PRRSVs to host cells. We also demonstrated the physical association of these compounds with the SRCR5 domain of CD163. In addition, molecular docking and structure-activity relationship analyses provided new insights for the CD163/PRRSV glycoprotein interaction and further improvement of these compounds against PRRSV infection.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Receptores Depuradores
9.
Toxicol Appl Pharmacol ; 483: 116834, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266871

RESUMEN

PURPOSE: Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Conejos , Gas Mostaza/toxicidad , Sustancias para la Guerra Química/toxicidad , Mediadores de Inflamación/metabolismo , Actinas/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Córnea/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Dexametasona/efectos adversos
10.
Gastroenterology ; 162(1): 223-237.e11, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599932

RESUMEN

BACKGROUND & AIMS: Throughout life, the intestinal epithelium undergoes constant self-renewal from intestinal stem cells. Together with genotoxic stressors and failing DNA repair, this self-renewal causes susceptibility toward malignant transformation. X-box binding protein 1 (XBP1) is a stress sensor involved in the unfolded protein response (UPR). We hypothesized that XBP1 acts as a signaling hub to regulate epithelial DNA damage responses. METHODS: Data from The Cancer Genome Atlas were analyzed for association of XBP1 with colorectal cancer (CRC) survival and molecular interactions between XBP1 and p53 pathway activity. The role of XBP1 in orchestrating p53-driven DNA damage response was tested in vitro in mouse models of chronic intestinal epithelial cell (IEC) DNA damage (Xbp1/H2bfl/fl, Xbp1ΔIEC, H2bΔIEC, H2b/Xbp1ΔIEC) and via orthotopic tumor organoid transplantation. Transcriptome analysis of intestinal organoids was performed to identify molecular targets of Xbp1-mediated DNA damage response. RESULTS: In The Cancer Genome Atlas data set of CRC, low XBP1 expression was significantly associated with poor overall survival and reduced p53 pathway activity. In vivo, H2b/Xbp1ΔIEC mice developed spontaneous intestinal carcinomas. Orthotopic tumor organoid transplantation revealed a metastatic potential of H2b/Xbp1ΔIEC-derived tumors. RNA sequencing of intestinal organoids (H2b/Xbp1fl/fl, H2bΔIEC, H2b/Xbp1ΔIEC, and H2b/p53ΔIEC) identified a transcriptional program downstream of p53, in which XBP1 directs DNA-damage-inducible transcript 4-like (Ddit4l) expression. DDIT4L inhibits mechanistic target of rapamycin-mediated phosphorylation of 4E-binding protein 1. Pharmacologic mechanistic target of rapamycin inhibition suppressed epithelial hyperproliferation via 4E-binding protein 1. CONCLUSIONS: Our data suggest a crucial role for XBP1 in coordinating epithelial DNA damage responses and stem cell function via a p53-DDIT4L-dependent feedback mechanism.


Asunto(s)
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Transformación Celular Neoplásica/metabolismo , Daño del ADN , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenoma/tratamiento farmacológico , Adenoma/genética , Adenoma/patología , Animales , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Bases de Datos Genéticas , Estrés del Retículo Endoplásmico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Neoplasias Intestinales/tratamiento farmacológico , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Inhibidores mTOR/farmacología , Ratones Noqueados , Transducción de Señal , Sirolimus/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión a la X-Box/genética
11.
J Med Virol ; 95(2): e28450, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597912

RESUMEN

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Asesinas Naturales , Ciclo Celular
12.
Exp Eye Res ; 236: 109672, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797797

RESUMEN

Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-ß-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.


Asunto(s)
Arsenicales , Lesiones de la Cornea , Animales , Conejos , Irritantes/efectos adversos , Irritantes/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Córnea/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/metabolismo , Arsenicales/efectos adversos , Arsenicales/metabolismo , Inflamación/metabolismo , Nucleótidos/efectos adversos , Nucleótidos/metabolismo , Lípidos
13.
Gastroenterology ; 160(7): 2354-2366.e11, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667488

RESUMEN

BACKGROUND & AIMS: A large unmet therapeutic need exists in inflammatory bowel disease (IBD). Inhibition of interleukin (IL)-6 appears to be effective, but the therapeutic benefit of a complete IL6/IL6 receptor (IL6R) blockade is limited by profound immunosuppression. Evidence has emerged that chronic proinflammatory activity of IL6 is mainly mediated by trans-signaling via a complex of IL6 bound to soluble IL6R engaging the gp130 co-receptor without the need for membrane-bound IL6R. We have developed a decoy protein, sgp130Fc, that exclusively blocks IL6 proinflammatory trans-signaling and has shown efficacy in preclinical models of IBD, without signs of immunosuppression. METHODS: We present a 12-week, open-label, prospective phase 2a trial (FUTURE) in 16 patients with active IBD treated with the trans-signaling inhibitor olamkicept (sgp130Fc) to assess the molecular mechanisms, safety, and effectiveness of IL6 trans-signaling blockade in vivo. We performed in-depth molecular profiling at various timepoints before and after therapy induction to identify the mechanism of action of olamkicept. RESULTS: Olamkicept was well tolerated and induced clinical response in 44% and clinical remission in 19% of patients. Clinical effectiveness coincided with target inhibition (reduction of phosphorylated STAT3) and marked transcriptional changes in the inflamed mucosa. An olamkicept-specific transcriptional signature, distinguishable from remission signatures of anti-tumor necrosis factor (infliximab) or anti-integrin (vedolizumab) therapies was identified. CONCLUSIONS: Our data suggest that blockade of IL6 trans-signaling holds great promise for the therapy of IBD and should undergo full clinical development as a new immunoregulatory therapy for IBD. (EudraCT no., Nu 2016-000205-36).


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/tratamiento farmacológico , Interleucina-6/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Adulto , Anciano , Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Receptores de Interleucina-6/metabolismo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto Joven
14.
Gastroenterology ; 161(3): 996-1010.e1, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34097885

RESUMEN

BACKGROUNDS & AIMS: Fluoropyrimidine c (5-fluorouracil [5FU]) increasingly represents the chemotherapeutic backbone for neoadjuvant, adjuvant, and palliative treatment of pancreatic ductal adenocarcinoma (PDAC). Even in combination with other agents, 5FU efficacy remains transient and limited. One explanation for the inadequate response is insufficient and nonspecific delivery of 5FU to the tumor. METHODS: We designed, generated, and characterized 5FU-incorporated systematic evolution of ligands by exponential enrichment (SELEX)-selected epidermal growth factor receptor (EGFR)-targeted aptamers for tumor-specific delivery of 5FU to PDAC cells and tested their therapeutic efficacy in vitro and in vivo. RESULTS: 5FU-EGFR aptamers reduced proliferation in a concentration-dependent manner in mouse and human pancreatic cancer cell lines. Time-lapsed live imaging showed EGFR-specific uptake of aptamers via clathrin-dependent endocytosis. The 5FU-aptamer treatment was equally effective in 5FU-sensitive and 5FU-refractory PDAC cell lines. Biweekly treatment with 5FU-EGFR aptamers reduced tumor burden in a syngeneic orthotopic transplantation model of PDAC, in an autochthonously growing genetically engineered PDAC model (LSL-KrasG12D/+;LSL-Trp53flox/+;Ptf1a-Cre [KPC]), in an orthotopic cell line-derived xenograft model using human PDAC cells in athymic mice (CDX; Crl:NU-Foxn1nu), and in patient-derived organoids. Tumor growth was significantly attenuated during 5FU-EGFR aptamer treatment in the course of follow-up. CONCLUSIONS: Tumor-specific targeted delivery of 5FU using EGFR aptamers as the carrier achieved high target specificity; overcame 5FU resistance; and proved to be effective in a syngeneic orthotopic transplantation model, in KPC mice, in a CDX model, and in patient-derived organoids and, therefore, represents a promising backbone for pancreatic cancer chemotherapy in patients. Furthermore, our approach has the potential to target virtually any cancer entity sensitive to 5FU treatment by incorporating 5FU into cancer cell-targeting aptamers as the delivery platform.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Aptámeros de Nucleótidos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Receptores ErbB/metabolismo , Fluorouracilo/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/metabolismo , Aptámeros de Nucleótidos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Endocitosis , Receptores ErbB/genética , Femenino , Fluorouracilo/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Técnica SELEX de Producción de Aptámeros , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Carcinog ; 61(5): 454-471, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35049094

RESUMEN

Prostate cancer (PCa) initiation and progression uniquely modify the prostate milieu to aid unrestrained cell proliferation. One salient modification is the loss of the ability of prostate epithelial cells to accumulate high concentrations of zinc; however, molecular alterations associated with loss of zinc accumulating capability in malignant prostate cells remain poorly understood. Herein, we assessed the stage-specific expression of zinc transporters (ZNTs) belonging to the ZNT (SLC30A) and Zrt- and Irt-like protein (ZIP) (SLC39A) solute-carrier family in the prostate tissues of different genetically engineered mouse models (GEMM) of PCa (TMPRSS2-ERG.Ptenflox/flox , Hi-Myc+/- , and transgenic adenocarcinoma of mouse prostate), their age-matched wild-type controls, and 104 prostate core biopsies from human patients with different pathological lesions. Employing immunohistochemistry, differences in the levels of protein expression and spatial distribution of ZNT were evaluated as a function of the tumor stage. Results indicated that the expression of zinc importers (ZIP1, ZIP2, and ZIP3), which function to sequester zinc from circulation and prostatic fluid, was low to negligible in the membranes of the malignant prostate cells in both GEMM and human prostate tissues. Regarding zinc exporters (ZNT1, ZNT2, ZNT9, and ZNT10) that export excess zinc into the extracellular spaces or intracellular organelles, their expression was low in normal prostate glands of mice and humans; however, it was significantly upregulated in prostate adenocarcinoma lesions in GEMM and PCa patients. Together, our findings provide new insights into altered expression of ZNTs during the progression of PCa and indicate that changes in zinc homeostasis could possibly be an early-initiation event during prostate tumorigenesis and a likely prevention/intervention target.


Asunto(s)
Adenocarcinoma , Proteínas de Transporte de Catión , Neoplasias de la Próstata , Adenocarcinoma/genética , Carcinogénesis/genética , Proteínas Portadoras , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Transformación Celular Neoplásica , Humanos , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/genética , Zinc/metabolismo
16.
Mol Carcinog ; 61(7): 717-734, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452553

RESUMEN

In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Adenocarcinoma/genética , Animales , Carcinogénesis/patología , Humanos , Masculino , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
17.
Toxicol Appl Pharmacol ; 437: 115904, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35108561

RESUMEN

Nitrogen mustard (NM) is an analogue of the potent vesicating agent sulfur mustard, with well-established ocular injury models in rabbit eyes to study vesicant-induced ocular toxicity. The effects of NM-exposure to eyes may include irritation, redness, inflammation, fibrosis, epithelial degradation, blurred vision, partial/complete blindness, which may be temporary or permanent, depending on the route, duration, and dosage of exposure. Effective countermeasures against vesicant exposure are presently not available and are warranted in case of any terrorist activity or accidental leakage from stockpiles. Herein, our focus was to evaluate whether dexamethasone (DEX), an FDA approved potent corticosteroid with documented anti-inflammatory activities, could be an effective treatment modality. Accordingly, utilizing NM-induced corneal injuries in rabbit ocular in vivo model, we examined and compared the efficacy of DEX treatments when administration was started at early (2 h), intermediate (4 h), and late (6 h) therapeutic windows of intervention after NM-exposure and administered every 8 h thereafter. The effects of NM-exposure and DEX treatments were evaluated on clinical (corneal opacity, ulceration, and neovascularization), biological (epithelial thickness, epithelial-stromal separation, blood vessels density, and inflammatory cell and keratocyte counts) and molecular (COX-2 and VEGF expression) parameters, at day 1, 3, 7 and 14. Results indicated that DEX treatment markedly and effectively reversed the NM-induced injury markers in rabbit corneas. Early administration of DEX at 2 h was found to be most effective in reversing NM-induced corneal injuries, followed by DEX 4 h and DEX 6 h administration initiation, indicating that DEX has best efficacy at the early therapeutic window in our study model.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Dexametasona/uso terapéutico , Mecloretamina/toxicidad , Animales , Biomarcadores , Irritantes/toxicidad , Masculino , Conejos
18.
Exp Eye Res ; 223: 109209, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961426

RESUMEN

Sulfur mustard (SM) is a notorious, bifunctional alkylating vesicant that was first used in warfare during World War I in 1917 and since then has been deployed in numerous skirmishes with its most recent documented use being during the Middle Eastern conflicts. Apart from its use in combat and terrorist activities, continual threat of accidental exposure from old stockpiles and improperly discarded munitions is ever present, especially to the innocent and unassuming civilian populations. SM can cause devastating injuries, depending on the dosage of SM exposure, route of exposure, as well as the physiological conditions of the individuals exposed. The most common routes of exposure are ocular, dermal, and exposure to the lungs and respiratory tissues through inhalation. Eyes are the most susceptible organ to SM-induced toxicities owing to their high moisture content and rapidly dividing cells. Additionally, ocular injury causes the most expeditious disablement of individuals even upon whole-body exposures. Therefore, it is imperative to understand the mechanisms underlying SM-induced ocular toxicity and design therapeutic interventions to prevent/mitigate ocular injuries. Ocular SM exposure may cause a wide range of symptoms such as inflammation, lacrimation, itching, dryness, photophobia, edema of the cornea/sclera/retina/iris, conjunctivitis, degradation of the corneal layer, fusion of two or more ocular layers, neovascularization, fibrosis, and temporary or permanent structural damage to one or more ocular layers. These symptoms may lead to vision impairments, resulting in partial or complete blindness that may be permanent. The highly toxic and exceedingly notorious nature of SM makes it a highly regulated chemical, requiring very expensive licensing, security, and safety requirements; thus, the more easily accessible analogue, nitrogen mustard (NM) that mimics SM-induced toxicity and injuries is employed in plethora of studies conducted in different animal models and culture systems. This review provides a comprehensive account of the injuries and symptoms that occur upon ocular SM exposures in human patients as well as studies in animal (in vivo, ex vivo) and cell (in vitro) models of SM and NM ocular exposures. Special emphasis has been laid on highlighting the strengths and lacunae in the research as well as the possible unexplored avenues of mechanisms underlying mustard-induced ocular injury that can be explored in future research endeavors. Furthermore, development of therapeutic interventions and targets of interest in the ocular system exposed to SM and NM, based on studies in human patients as well as in vivo, ex vivo, and in vitro models has been discussed in great depth, providing a valuable knowledge database to delineate pathways associated with vesicant-induced toxicity, and strategies/diagnostic tools against SM-induced toxicity.


Asunto(s)
Sustancias para la Guerra Química , Lesiones Oculares , Gas Mostaza , Animales , Sustancias para la Guerra Química/toxicidad , Córnea/metabolismo , Lesiones Oculares/inducido químicamente , Lesiones Oculares/metabolismo , Humanos , Irritantes/efectos adversos , Irritantes/metabolismo , Mecloretamina/toxicidad , Gas Mostaza/toxicidad
19.
Cancer Control ; 29: 10732748221119349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36036360

RESUMEN

Management of gynecological cancers has suffered during the pandemic, partly due to lockdown and partly due to directing resources to manage COVID-19 patients. Modification of gynecological cancer management during this pandemic is recommended. Cervical cancer patients who present with stage IA1 disease can have a delay of up to 8 weeks for surgical treatment, considering the slow tumor growth rate. Women with stages IA2, IB1, IB2, IIA1 must undergo radical hysterectomy and lymphadenectomy within 6 to 8 weeks. In areas where surgical treatment is not available, patients should be referred for radiation therapy/areas with adequate surgical expertise. The surgical option is attractive for early cancers during the COVID era, as it involves a single visit compared to the multiple visits required for chemoradiation. The value of lymph node staging needs to be reconsidered. Neoadjuvant chemotherapy should be given preference over primary cytoreductive surgery for advanced ovarian cancers. Surgeries, which demand extended surgical time such as Hyperthermic Intraperitoneal Chemotherapy and pelvic exenterations, should be avoided during this pandemic. For patients scheduled for interval surgery after two or three neoadjuvant cycles, six cycles of chemotherapy should be considered before surgery is performed. For early-stage, low-grade endometrial cancer, consideration should be given to medical management until surgery is possible. The above recommendations have been made keeping in mind the geography, patient load, and availability of resources available to health care providers from southeast Asia. They might not be applicable globally and every practitioner should take call regarding patient's management as per availability of resources and loco-regional circumstances. The implementation of recommended international guidelines for the management of gynecologic cancers should take precedence. Each modification to the standard approach should be approved by a multidisciplinary team depending on the condition of the patients and the locoregional circumstances.


Asunto(s)
COVID-19 , Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Control de Enfermedades Transmisibles , Femenino , Humanos , Estadificación de Neoplasias , Pandemias
20.
Gastroenterology ; 158(1): 253-269.e14, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593700

RESUMEN

BACKGROUND & AIMS: Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS: We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS: Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS: In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.


Asunto(s)
Furanos/administración & dosificación , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Pancreatitis/inmunología , Sulfonamidas/administración & dosificación , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Células Acinares , Inmunidad Adaptativa , Animales , Arginina/toxicidad , Células Cultivadas , Ceruletida/toxicidad , Citocinas/sangre , Citocinas/inmunología , Modelos Animales de Enfermedad , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Indenos , Inyecciones Intraperitoneales , Interleucina-18/inmunología , Interleucina-18/metabolismo , Macrófagos/inmunología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Páncreas/citología , Páncreas/inmunología , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Cultivo Primario de Células , Sulfonas , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Células Th2/inmunología , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA