Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107412, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796064

RESUMEN

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.

2.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447582

RESUMEN

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Asunto(s)
Acetil-CoA Carboxilasa , Aminoácidos , Gluconeogénesis , Hígado , Malonil Coenzima A , Ratones Noqueados , Oxidación-Reducción , Animales , Malonil Coenzima A/metabolismo , Hígado/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ratones , Aminoácidos/metabolismo , Masculino , Piruvato Carboxilasa/metabolismo , Ciclo del Ácido Cítrico , Ácido Pirúvico/metabolismo , Ratones Endogámicos C57BL , Ayuno/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo
3.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848446

RESUMEN

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Asunto(s)
Adiponectina , Gluconeogénesis , Riñón , Animales , Masculino , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ácido Pirúvico/metabolismo
4.
Nat Commun ; 12(1): 3756, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145255

RESUMEN

De novo lipogenesis (DNL) is disrupted in a wide range of human disease. Thus, quantification of DNL may provide insight into mechanisms and guide interventions if it can be performed rapidly and noninvasively. DNL flux is commonly measured by 2H incorporation into fatty acids following deuterated water (2H2O) administration. However, the sensitivity of this approach is limited by the natural abundance of 13C, which masks detection of 2H by mass spectrometry. Here we report that high-resolution Orbitrap gas-chromatography mass-spectrometry resolves 2H and 13C fatty acid mass isotopomers, allowing DNL to be quantified using lower 2H2O doses and shorter experimental periods than previously possible. Serial measurements over 24-hrs in mice detects the nocturnal activation of DNL and matches a 3H-water method in mice with genetic activation of DNL. Most importantly, DNL is detected in overnight-fasted humans in less than an hour and is responsive to feeding during a 4-h study. Thus, 2H specific MS provides the ability to study DNL in settings that are currently impractical.


Asunto(s)
Ácidos Grasos/biosíntesis , Cromatografía de Gases y Espectrometría de Masas/métodos , Lipogénesis/fisiología , Hígado/metabolismo , Triglicéridos/biosíntesis , Animales , Deuterio/química , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA