RESUMEN
Drug binding to plasma proteins influences processes such as liberation, adsorption, disposition, metabolism, and elimination of drugs, which are thus one of the key steps of a new drug development. As a result, the characterization of drug-protein interactions is an essential part of these time- and money-consuming processes. It is important to determine not only the binding strength and the stoichiometry of interaction, but also the binding site of a drug on a protein molecule, because two drugs with the same binding site can mutually affect free drug concentration. Capillary electrophoresis-frontal analysis with mobility shift affinity capillary electrophoresis is one of the most used affinity capillary electrophoresis methods for the characterization of these interactions. In this study, a well-known sensitivity problem of most capillary electrophoresis-frontal analyses using ultraviolet detection is solved by its combination with contactless conductivity detection, which provided sixfold lower limits of quantitation and detection. Binding parameters of the human serum albumin-salicylic acid model affinity pair were evaluated by this newly developed approach and by the classical approach with ultraviolet detection primarily used for their mutual comparison. The results of both approaches agreed well and are also in agreement with literature data obtained using different techniques.
Asunto(s)
Proteínas Sanguíneas , Albúmina Sérica Humana , Humanos , Conductividad Eléctrica , Sitios de Unión , Electroforesis Capilar/métodosRESUMEN
CE/frontal analysis (CE/FA) is probably one of the most frequently used modes of CE for studying affinity interactions. It is typically performed with classic UV-Vis detection that suffers from low concentration sensitivity. To overcome this limitation, the applicability of CE/FA in combination with ESI-MS detection for the investigation of drug-HSA interactions was demonstrated. The developed new method combines the advantages of CE/FA, such as low sample consumption and no labeling or immobilization of interacting partners, with the benefits of MS detection, such as higher selectivity and sensitivity; moreover, it can be used for molecules lacking a fluorophore or chromophore. The binding parameters of tolbutamide (TL) and glimepiride (GLP), first- and second-generation antidiabetics that differ strongly in their solubility in aqueous solutions, were investigated by this CE/FA-MS method. This method, in contrast to the CE/FA method with the most commonly used UV-Vis detection, is more sensitive; an almost three times lower LOD was reached. The binding parameters of TL and GLP were investigated by this CE/FA-MS method and compared with the literature data. The binding constant value of TL obtained by UV-Vis detection was lower than the value obtained by the method hyphenated with MS detection, which is probably given by the influence of the ESI parameters on the stability of drug-HSA complex. In addition, the ratio of TL and HSA concentrations was divergent in both of the experimental approaches. Finally, it can be concluded that both detection methods have their strengths and weaknesses.
Asunto(s)
Proteínas Sanguíneas , Electroforesis Capilar , Proteínas Sanguíneas/metabolismo , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray , AguaRESUMEN
In this study, two capillary electrophoresis-based ligand binding assays, namely, mobility shift affinity capillary electrophoresis (ms-ACE) and capillary electrophoresis-frontal analysis (CE-FA), were applied to determine binding parameters of human serum albumin toward small drugs under similar experimental conditions. The substances S-amlodipine (S-AML), lidocaine (LDC), l-tryptophan (l-TRP), carbamazepine (CBZ), ibuprofen (IBU), and R-verapamil (R-VPM) were used as the main binding partners. The scope of this comparative study was to estimate and compare both the assays in terms of their primary measure's precision and the reproducibility of the derived binding parameters. The effective mobility could be measured with pooled CV values between 0.55% and 7.6%. The precision of the r values was found in the range between 1.5% and 10%. Both assays were not universally applicable. The CE-FA assay could successfully be applied to measure the drugs IBU, CBZ, and LDC, and the interaction toward CBZ, S-AML, l-TRP, and R-VPM could be determined using ms-ACE. The average variabilities of the estimated binding constants were 64% and 67% for CE-FA and ms-ACE, respectively.
Asunto(s)
Isotacoforesis , Leucemia Mieloide Aguda , Electroforesis Capilar/métodos , Humanos , Ibuprofeno , Unión Proteica , Reproducibilidad de los Resultados , Albúmina Sérica Humana/metabolismo , TriptófanoRESUMEN
Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.
Asunto(s)
Ensamble y Desensamble de Cromatina , Suturas Craneales/crecimiento & desarrollo , Craneosinostosis/metabolismo , Mutación Missense , Nucleosomas/metabolismo , Osteogénesis , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Animales , Suturas Craneales/metabolismo , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Lactante , Masculino , Ratones , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Población Blanca , Secuenciación Completa del GenomaRESUMEN
Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed "selfish spermatogonial selection," explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia and Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS, and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from five men (median age, 83 yr). Following ultradeep sequencing (about 16,000×), development of a low-frequency variant prioritization strategy, and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1, and SOS1), all of which encode components of the RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the aging male germline is a repository for such deleterious mutations.
Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Transducción de Señal , Testículo/metabolismo , Proteínas ras/metabolismo , Anciano , Anciano de 80 o más Años , Variación Genética , Humanos , Masculino , Persona de Mediana EdadRESUMEN
MicroRNAs (miRNAs) have been proven to be important oncogenes and tumor suppressors in wide range of cancers, including renal cell carcinoma (RCC). In our study, we evaluated miRNA-429 as potential diagnostic/prognostic biomarker in 172 clear cell RCC patients and as a potential regulator of epithelial-mesenchymal transition (EMT) in vitro. We demonstrated that miR-429 is down-regulated in tumor tissue samples (P < 0.0001) and is significantly associated with cancer metastasis (P < 0.0001), shorter disease-free (P = 0.0105), and overall survival (P = 0.0020). In addition, ectopic expression of miR-429 in 786-0 RCC cells followed by TGF-ß treatment led to increase in the levels of E-cadherin expression (P < 0.0001) and suppression of cellular migration (P < 0.0001) in comparison to TGF-ß-treated controls. Taken together, our findings suggest that miR-429 may serve as promising diagnostic and prognostic biomarker in RCC patients. We further suggest that miR-429 has a capacity to inhibit loss of E-cadherin in RCC cells undergoing EMT and consequently attenuate their motility.
Asunto(s)
Carcinoma de Células Renales/secundario , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , MicroARNs/genética , Recurrencia Local de Neoplasia/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD , Biomarcadores de Tumor , Cadherinas/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Estudios de Casos y Controles , Proliferación Celular , Terapia Combinada , Regulación hacia Abajo , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Renales/genética , Neoplasias Renales/terapia , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Factor de Crecimiento Transformador beta/genética , Células Tumorales CultivadasRESUMEN
Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.
Asunto(s)
Suturas Craneales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteogénesis/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Acrocefalosindactilia/embriología , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Suturas Craneales/citología , Suturas Craneales/embriología , Duramadre/citología , Duramadre/embriología , Duramadre/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Osteoblastos/citología , Osteoblastos/metabolismo , RNA-Seq/métodos , Cráneo/citología , Cráneo/embriología , Cráneo/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismoRESUMEN
The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of â¼10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty.
Asunto(s)
Espermatogonias , Testículo , Adulto , Humanos , Lactante , Masculino , Pubertad , Células de Sertoli , Espermatogénesis/genéticaRESUMEN
Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity.
Asunto(s)
Espermatogénesis/genética , Espermatogonias/metabolismo , Testículo/citología , Testículo/metabolismo , Adolescente , Adulto , Animales , Atlas como Asunto , Secuencia de Bases , Ciclo Celular/genética , Plasticidad de la Célula/genética , Humanos , Lactante , Masculino , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Espermatogonias/citología , Espermatogonias/crecimiento & desarrollo , TranscriptomaRESUMEN
Human adult spermatogonial stem cells (hSSCs) must balance self-renewal and differentiation. To understand how this is achieved, we profiled DNA methylation and open chromatin (ATAC-seq) in SSEA4+ hSSCs, analyzed bulk and single-cell RNA transcriptomes (RNA-seq) in SSEA4+ hSSCs and differentiating c-KIT+ spermatogonia, and performed validation studies via immunofluorescence. First, DNA hypomethylation at embryonic developmental genes supports their epigenetic "poising" in hSSCs for future/embryonic expression, while core pluripotency genes (OCT4 and NANOG) were transcriptionally and epigenetically repressed. Interestingly, open chromatin in hSSCs was strikingly enriched in binding sites for pioneer factors (NFYA/B, DMRT1, and hormone receptors). Remarkably, single-cell RNA-seq clustering analysis identified four cellular/developmental states during hSSC differentiation, involving major transitions in cell-cycle and transcriptional regulators, splicing and signaling factors, and glucose/mitochondria regulators. Overall, our results outline the dynamic chromatin/transcription landscape operating in hSSCs and identify crucial molecular pathways that accompany the transition from quiescence to proliferation and differentiation.
Asunto(s)
Cromatina/metabolismo , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Análisis de la Célula Individual/métodos , Espermatogonias/citología , Células Madre/citología , Células Madre/metabolismo , Secuencia de Bases , Sitios de Unión , Análisis por Conglomerados , ADN/metabolismo , Metilación de ADN/genética , Genómica , Humanos , Masculino , Meiosis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Reproducibilidad de los Resultados , Túbulos Seminíferos/citología , Antígenos Embrionarios Específico de Estadio/metabolismo , Transcripción Genética , Transcriptoma/genéticaRESUMEN
OBJECTIVES: The aim of the study was to compare an ultrasound-based prediction formula of Shepard, Hadlock, our new equation and equation of Nahum based on maternal characteristics. STUDY DESIGN: Two groups of 125 (group A) and 130 (group B) healthy term pregnant women were sampled. Standard ultrasonographic measurements were performed and maternal characteristics recorded. A new birth weight equation was developed by multiple stepwise regression analysis from the group A data and then compared to the different birth weight prediction equations of Hadlock, Shepard and Nahum on group B. RESULTS: New prediction equation: log(10) EFW=0.64041xBPD-0.03257xBPD(2)+0.00154xACxFL. Our new (Halaska) and Hadlock's ultrasound estimations are comparable. Both equations are superior to Shepard and Nahum's equations. The Nahum equation is comparable to the Shepard estimation. Halaska equation tends to have the highest overall accuracy, Hadlock's estimation predicts better fetuses over 4000g, but this needs to be further validated. CONCLUSIONS: The Halaska and Hadlock's estimations are comparable to one another; the Nahum equation is comparable to Shepard's and can be used as simple, inexpensive and approximative estimate.
Asunto(s)
Antropometría/métodos , Peso al Nacer , Pesos y Medidas Corporales/métodos , Macrosomía Fetal/diagnóstico , Modelos Biológicos , Adulto , Femenino , Macrosomía Fetal/diagnóstico por imagen , Predicción , Humanos , Recién Nacido , Embarazo , Análisis de Regresión , Ultrasonografía PrenatalRESUMEN
BACKGROUND: Renal cell carcinoma (RCC) is the most common neoplasm of adult kidney accounting for about 3% of adult malignancies. P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of naturally occurring, short non-coding RNAs involved in silencing of transposable elements and in sequence-specific chromatin modifications. There were preliminary data published indicating that piR-823 expression is deregulated in circulating tumor cells and tumor tissue in gastric and kidney cancer, respectively. PATIENTS AND METHODS: In our study, we analyzed piR-823 levels in 588 biological specimens: tumor tissue (N=153), adjacent renal parenchyma (N=121), blood serum (N=178) and urine (N=20) of patients undergoing nephrectomy for RCC; and in blood serum (N=101) and urine (N=15) of matched healthy controls. Expression levels of piR-823 were determined in all biological specimens by quantitative real-time polymerase chain reaction, compared in patients and controls, and correlated with clinicopathological features of RCC. RESULTS: We identified a significant down-regulation of piR-823 in tumor tissue [p<0.0001, area under the curve (AUC)=0.7945]. On the contrary in blood serum and urine, the expression of piR-823 was significantly higher in patients with RCC compared to healthy individuals (p=0.0005, AUC=0.6264 and p=0.0157, AUC=0.7433, respectively). We further observed higher levels of piR-823 in tumor tissue to be associated with shorter disease-free survival of patients (p=0.0186) and a trend for higher piR-823 levels in serum to be associated with advanced clinical stages of RCC (p=0.0691). There were no other significant associations of piR-823 levels in any type of biological specimen with clinicopathological features of RCC. CONCLUSION: piR-823 is down-regulated in tumor tissue, but positively correlated with worse outcome, indicating its complex role in RCC pathogenesis. In blood serum, piR-823 is up-regulated, but with unsatisfactory analytical performance. Preliminary data indicate the promising diagnostic utility of urinary piR-823 in patients with RCC.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , ARN Interferente Pequeño/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Carcinoma de Células Renales/sangre , Carcinoma de Células Renales/orina , Humanos , Neoplasias Renales/sangre , Neoplasias Renales/orina , Persona de Mediana Edad , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/orina , Adulto JovenRESUMEN
Clear-cell renal cell carcinomas (ccRCCs) are genetically heterogeneous tumors presenting diverse clinical courses. Epithelial-mesenchymal transition (EMT) is a crucial process involved in initiation of metastatic cascade. The aim of our study was to identify an integrated miRNA/mRNA signature associated with metastasis and prognosis in ccRCC through targeted approach based on analysis of miRNAs/mRNAs associated with EMT. A cohort of 230 ccRCC was included in our study and further divided into discovery, training and validation cohorts. EMT markers were evaluated in ccRCC tumor samples, which were grouped accordingly to EMT status. By use of large-scale miRNA/mRNA expression profiling, we identified miRNA/mRNA with significantly different expression in EMT-positive tumors and selected 41 miRNAs/mRNAs for training phase of the study to evaluate their diagnostic and prognostic potential. Fifteen miRNAs/mRNAs were analyzed in the validation phase, where all evaluated miRNA/mRNA candidates were confirmed to be significantly deregulated in tumor tissue. Some of them significantly differed in metastatic tumors, correlated with clinical stage, with Fuhrman grade and with overall survival. Further, we established an EMT-based stage-independent prognostic scoring system enabling identification of ccRCC patients at high-risk of cancer-related death. Finally, we confirmed involvement of miR-429 in EMT regulation in RCC cells in vitro.
Asunto(s)
Carcinoma de Células Renales/genética , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Neoplasias Renales/genética , MicroARNs/genética , ARN Mensajero/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Pronóstico , Análisis de SupervivenciaRESUMEN
MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression. In the last decade, number of evidences showing miRNAs contribution to the regulation of apoptosis, cellular proliferation, differentiation, and other important cellular processes is constantly growing. Specific miRNA expression signatures have been identified in variety of human cancers as well as pathologies of cardiovascular and urinary systems. Our chapter focuses on the potential of urinary miRNAs to serve as biomarkers in uro-oncology, nephrology, and cardiology. We discuss in detail recent knowledge about the origin of urinary miRNAs, their stability, quality control, and their utility as a potential new class of biomarkers in medicine. Finally, we summarize the studies focusing on detection and characterization of urinary miRNAs as potential biomarkers in urologic cancers, nephrology, and cardiology.
Asunto(s)
Cardiopatías/orina , MicroARNs/orina , Neoplasias/orina , Enfermedades Urológicas/orina , Biomarcadores/orina , Femenino , Cardiopatías/diagnóstico , Cardiopatías/genética , Cardiopatías/patología , Humanos , Masculino , MicroARNs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Estabilidad del ARN , Enfermedades Urológicas/diagnóstico , Enfermedades Urológicas/genética , Enfermedades Urológicas/patologíaRESUMEN
Micro-ribonucleic acids (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression. The ability of miRNAs to inhibit translation of oncogenes and tumor suppressors implies that they may be involved in carcinogenesis. Our review focuses on the potential of urinary miRNAs to serve as biomarkers of urologic cancers. We discuss in detail the recent knowledge about the origin of urinary miRNAs, their stability, quality control, and their utility as a potential new class of biomarkers in urologic cancer. Finally, we summarize the studies focusing on detection and characterization of urinary miRNAs as potential biomarkers in bladder, prostate, and kidney cancers.