Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(6): 3329-3340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38082555

RESUMEN

BACKGROUND: Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS: Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION: These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Zanthoxylum , Inhibidores de la Enzima Convertidora de Angiotensina/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Hidrólisis , Antioxidantes/farmacología , Antioxidantes/química , Semillas/metabolismo , Subtilisinas/química
2.
J Sci Food Agric ; 104(12): 7335-7346, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38651728

RESUMEN

BACKGROUND: The present study investigated the structure, functional and physicochemical properties of lotus seed protein (LSP) under different pH environments. The structures of LSP were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy (FTIR), zeta potential, particle size distributions, free sulfhydryl and rheological properties. The functional and physicochemical properties of LSP were characterized by color, foaming property, emulsification property, solubility, oil holding capacity, water holding capacity, differential scanning calorimetry analysis and surface hydrophobicity. RESULTS: LSP was mainly composed of eight subunits (18, 25, 31, 47, 51, 56, 65 and 151 kDa), in which the richest band was 25 kDa. FTIR results showed that LSP had high total contents of α-helix and ß-sheet (44.81-46.85%) in acidic environments. Meanwhile, there was more ß-structure and random structure in neutral and alkaline environments (pH 7.0 and 9.0). At pH 5.0, LSP had large particle size (1576.98 nm), high emulsion stability index (91.43 min), foaming stability (75.69%) and water holding capacity (2.21 g g-1), but low solubility (35.98%), free sulfhydryl content (1.95 µmol g-1) and surface hydrophobicity (780). DSC analysis showed the denaturation temperatures (82.23 °C) of LSP at pH 5.0 was higher than those (80.10, 80.52 and 71.82 °C) at pH 3.0, 7.0 and 9.0. The analysis of rheological properties showed that LSP gel had high stability and great strength in an alkaline environment. CONCLUSION: The findings of the present study are anticipated to serve as a valuable reference for the implementation of LSP in the food industry. © 2024 Society of Chemical Industry.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Lotus , Tamaño de la Partícula , Proteínas de Plantas , Semillas , Solubilidad , Semillas/química , Concentración de Iones de Hidrógeno , Lotus/química , Proteínas de Plantas/química , Reología , Emulsiones/química , Espectroscopía Infrarroja por Transformada de Fourier , Estructura Secundaria de Proteína
3.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158728

RESUMEN

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Asunto(s)
Fabaceae , Vigna , Vigna/química , Hidrolisados de Proteína/química , Proteínas de Plantas/química , Solubilidad
4.
J Sci Food Agric ; 103(11): 5432-5441, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37038905

RESUMEN

BACKGROUND: In this study, the fermentation conditions of peony seed soy sauce (PSSS) koji were optimized by response surface method, and the quality components and antioxidant activity of PSSS were investigated at different low-salt solid-state fermentation stages. RESULTS: Results of response surface method showed that the optimal fermentation conditions were 460.6 g kg-1 water content, 48.6 h culture time, 31.5 °C culture temperature and ratio 2.1:1 (w/w) of peony seed meal:wheat bran, with the highest neutral protease activity (2193.78 U g-1 ) of PSSS koji. PSSS had the highest amino acid nitrogen (7.69 g L-1 ), salt-free soluble solids (185.26 g L-1 ), total free amino acids (49.03 g L-1 ), essential free amino acids (19.58 g L-1 ) and umami free amino acids (16.64 g L-1 ) at 20 days of fermentation. The highest total phenolics were 5.414 g gallic acid equivalent L-1 and total flavonoids 0.617 g rutin equivalent L-1 , as well as the highest DPPH radical scavenging activity (86.19%) and reducing power (0.8802, A700 ) of PSSS fermented at 30 days. Sensory evaluation showed that fermentation of 20 days and 25 days could produce a better taste and aroma of PSSS than 15 days and 30 days. CONCLUSION: PSSS had the highest quality components in the middle of fermentation (20 days) and the highest antioxidant activity in the late fermentation period (30 days). These results demonstrated that peony seed meal could be used to produce high-quality soy sauce with high antioxidant activity. © 2023 Society of Chemical Industry.


Asunto(s)
Paeonia , Alimentos de Soja , Fermentación , Antioxidantes , Gusto , Aminoácidos , Aminoácidos Esenciales
5.
Fish Shellfish Immunol ; 126: 292-302, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35654387

RESUMEN

The objective of this study was to investigate protective effects of tree peony seed protein hydrolysate by Alcalase (AL-TPSPH) on oxidative damage, inflammation and apoptosis using Cd-induced zebrafish embryos. Zebrafish embryos were treated with either Cd (2 µg/L) or AL-TPSPH (25, 50 and 75 µg/mL) alone or in combination of both from 4 to 144 h post fertilization (hpf). The effects of these treatments on developments, antioxidant parameters and mRNA expression of genes related to oxidative damage, inflammation and apoptosis were examined. The results showed that co-treatment with Cd and AL-TPSPH significantly increased hatching and survival rates and decreased malformation rates of zebrafish embryos compared with Cd treatment alone group (P < 0.05). Cd-induced increase of MDA content, decreases of T-AOC content, GSH/GSSG ratio and activities of SOD, CAT and GPx in zebrafish embryos were modified upon treatment with AL-TPSPH. AL-TPSPH treatment significantly suppressed Cd-induced down-regulations of the antioxidant gene expressions (Mn-sod, Cat and GPx1a) in zebrafish embryos (P < 0.05). AL-TPSPH also prevented Cd-induced up-regulations of pro-inflammatory cytokine (TNF-α, IL-1ß and IFN-γ) expressions. Moreover, AL-TPSPH inhibited Cd-induced up-regulations of pro-apoptotic genes (C-jun, Caspase-3 and Caspase-9) in zebrafish embryos. Collectively, these results indicated that AL-TPSPH could reduce Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos, suggesting its future applications as functional food or pharmaceutical ingredient.


Asunto(s)
Paeonia , Pez Cebra , Animales , Antioxidantes/metabolismo , Apoptosis , Cadmio/metabolismo , Embrión no Mamífero , Inflamación/inducido químicamente , Inflamación/metabolismo , Estrés Oxidativo , Paeonia/metabolismo , Hidrolisados de Proteína/metabolismo , Pez Cebra/genética
6.
J Dairy Sci ; 99(7): 5064-5073, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27157568

RESUMEN

The effects of glycinin basic peptide (GBP) on physicochemical characteristics and microbial inactivation of pasteurized milk were investigated over 21d of storage at 4°C. Sensory properties, total bacterial count, pH, alcohol levels, lactose content, and protein changes of pasteurized milk differentially treated with GBP were analyzed periodically during refrigerated storage. Compared with the control, reductions for total bacterial count and specific bacterium (Staphylococcus aureus) in pasteurized milk treated with GBP during storage were found. However, sensory scores, pH, lactose, and protein contents of pasteurized milk treated with GBP were much higher than those of the control. A concentration of 0.015% (wt/vol) GBP could effectively inhibit the growth and reproduction of bacteria in pasteurized milk, enhance its sensory and physicochemical properties, and extend its shelf life to 15d. Thus, GBP has good potential to be a natural milk preservative.


Asunto(s)
Conservantes de Alimentos/química , Globulinas/química , Leche/química , Leche/microbiología , Proteínas de Soja/química , Animales , Recuento de Colonia Microbiana , Concentración de Iones de Hidrógeno , Lactosa/análisis , Pasteurización , Proteínas/análisis
7.
Gen Comp Endocrinol ; 213: 130-5, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25449181

RESUMEN

Ghrelin plays important roles, such as regulating growth hormone release and energy metabolism, but little is known about its developmental changes in the proventriculi of chicken embryos. This study was designed to elucidate the distributions and developmental changes of ghrelin and ghrelin-O-acyltransferase (GOAT) expression in broiler embryos using qRT-PCR and immunohistochemistry. Our results demonstrated the following: (1) on E18, ghrelin and GOAT are ubiquitously expressed in every tissue examined. The expression level of ghrelin mRNA was the highest in the proventriculus, reaching a level that was 50-fold higher than that in the hypothalamus, while GOAT mRNA expression was low in the proventriculus and it was only 67.6% as high as that of hypothalamus; (2) ghrelin and GOAT mRNA expression were detected in the proventriculus on E9, but only at 1.9% and 1.7% of the level expressed on E18, respectively, and their expression levels increased rapidly from E18 to E21. There was similar developmental pattern in the ghrelin and GOAT mRNA expression; and (3) ghrelin-immunopositive cells were first detected in the proventriculus on E15, were located only in the compound tubular glands of the proventriculus, and were of the closed-cell type. The density of ghrelin-immunopositive cells increased significantly from E15 to E21. These results suggest that ghrelin may be an important regulating factor that plays a vital role during the development of chicken embryos.


Asunto(s)
Aciltransferasas/metabolismo , Embrión de Pollo/metabolismo , Pollos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ghrelina/metabolismo , Aciltransferasas/genética , Animales , Femenino , Ghrelina/genética , Hipotálamo/metabolismo , Técnicas para Inmunoenzimas , Especificidad de Órganos , Proventrículo/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular
8.
Molecules ; 20(4): 6022-32, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25853318

RESUMEN

Cinnamaldehyde (CA) is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA) was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD) culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC) value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.


Asunto(s)
Acroleína/análogos & derivados , Aflatoxinas/biosíntesis , Antifúngicos/administración & dosificación , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Nanocápsulas , Acroleína/administración & dosificación , Acroleína/química , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , Nanocápsulas/química , Nanocápsulas/ultraestructura , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Mol Sci ; 15(3): 3860-70, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24599078

RESUMEN

The chemical properties of ß-glucans leading to their inhibition on aflatoxin (AF) production by Aspergillus flavus remain unclear. In this study, structurally modified lentinan derivatives were prepared by carboxymethylation, sulfation, and phosphorylation to explore their inhibition activity to AF synthesis. The results demonstrated that inhibitory activity of lentinan decreased at higher or lower concentrations than 200 µg/mL. Compared with lentinan, the sulphated derivatives only performed a reduced optimal inhibition rate at a higher concentration. The phosphorylated derivatives achieved complete inhibition of AF production at 50 µg/mL, but the inhibitory activity was attenuated with an increase of concentration. The minimum concentration of carboxymethylated derivatives to completely inhibit AF synthesis was the same as that of the original lentinan, whereas their inhibition activity was not reduced at the increasing concentration. RT-PCR analyses were conducted to understand the effects of lentinan and its carboxymethylated derivatives on the transcription of certain genes associated with AF biosynthesis. The results showed that lentinan delayed the transcription of aflQ, whereas its carboxymethylated derivatives promoted the transcriptions of all the tested genes. Our results revealed that some chemical group features apart from the ß-bond could play the vital role in the prevention of AF formation by polysaccharide, and highlighted the structural modifications which could promote its practicability in the control of aflatoxin contamination.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Lentinano/farmacología , Aspergillus flavus/genética , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos/genética , Lentinano/química , Lentinano/metabolismo , Metilación , Micelio/efectos de los fármacos , Micelio/genética , Micelio/crecimiento & desarrollo , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectroscopía Infrarroja por Transformada de Fourier , Sulfatos/metabolismo
10.
Food Chem ; 442: 138468, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266417

RESUMEN

The emergence of cultured meat presents the potential for personalized food additive manufacturing, offering a solution to address future food resource scarcity. Processing raw materials and products in synthetic food products poses challenges in identifying hazards, impacting the entire industrial chain during the industry's further evolution. It is crucial to examine the correlation of biological information at different levels and to reveal the temporal dynamics jointly. Proposed active prevention method includes four aspects: (i) Investigating the molecular-level mechanism underlying the binding and dissociation of hazards with proteins represents a novel approach to mitigate matrix effect. (ii) Identifying distinct fragments is a pivotal advancement toward developing a novel screening strategy for hazards throughout the food chain. (iii) Designing an artificial intelligence model-based approach to acquire multi-dimensional histology data also holds significant potential for various applications. (iv) Integrating multimodal data is a practical approach to enhance evaluation and feedback control accuracy.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Teoría Funcional de la Densidad , Alimentos , Aditivos Alimentarios
11.
Food Chem ; 448: 139071, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552458

RESUMEN

Hypsizygus marmoreuss is an under-explored source of flavor peptides that can enhance the flavor of NaCl or MSG, allowing products to be reformulated in line with reduction policies. This study utilized advanced techniques, including UPLC-Q-TOF MS/MS and molecular docking, to identify H. marmoreuss peptides. Sensory evaluations revealed 10 peptides with pronounced umami flavors and seven with dominantly salty tastes. VLPVPQK scored highest for umami intensity (5.2), and EGNPAHQK for salty intensity (6.2). Further investigation influenced by 0.35 % MSG or 0.35 % NaCl exposed peptides with elevated umami and salty thresholds. LDSPATPEK, VVEGEPSLK, and QKLPEKPER had umami-enhancing thresholds of 0.18, 0.18, and 0.35 mM, while LDSPATPEK and VVEGEPSLK had similar thresholds for salt (0.09 mM). Molecular docking revealed that taste receptor proteins interacted with umami peptides through hydrogen, carbon-hydrogen, alkyl, and van der Waals forces. Specific amino acids in the umami receptor T1R1 had roles in bonding with umami peptides through hydrogen and carbon-hydrogen interactions. In conclusion, molecular docking proved to be an effective and efficient method for flavor peptide screening. Further, this study demonstrated that flavor peptides from H. marmoreuss had the capacity to enhance NaCl and MSG flavours and might be useful tools for reformulation, reducing salt and MSG contents.

12.
Foods ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790773

RESUMEN

Postharvest rot is an urgent problem affecting the storage of winter jujube. Therefore, the development of new technologies for efficient and safe preservation is very important. This study aimed to elucidate the fungal microbiota found on the epidermis of jujube during the storage period using high-throughput sequencing, as well as to monitor the changes in quality indexes throughout this period. Through internal transcribed spacer (ITS) sequencing, we identified two phyla (Basidiomycota and Ascomycota) and six genera (Cryptococcus, Bulleromyces, Sporidiobolus, Alternaria, Pseudozyma, and Sporobolomyces), which potentially contribute to the spoilage and deterioration of jujube, referred to as "core fungal taxa". A high correlation was further found between preservation indices (including decay rate, firmness, and total soluble solids) and the growth of multiple core fungi over time. These findings will provide insights and a theoretical basis for further research on preservation techniques related to biological control during date fruit storage.

13.
Microbiol Res ; 284: 127711, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636240

RESUMEN

Microbial ferroptosis has been proved to combat drug-resistant pathogens, but whether this pattern can be applied to the prevention and control of Escherichia coli remains to be further explored. In this study, ferrous gluconate (FeGlu) showed remarkable efficacy in killing E. coli MG1655 with a mortality rate exceeding 99.9%, as well as enterotoxigenic E. coli H10407 (ETEC H10407) and enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). Bacteria death was instigated by the infiltration of Fe2+, accompanied by a burst of intracellular reactive oxygen species (ROS) and lipid peroxidation. Notably, mitigating lipid peroxidation failed to alleviate death of E. coli. Further findings confirmed that FeGlu induced DNA damage, and ΔrecA mutant showed more sensitive, implicating that DNA damage was involved in the death of E. coli. The direct interaction of Fe2+ with DNA was demonstrated by fluorescent staining, gel electrophoresis, and circular dichroism (CD). Moreover, proteomic analysis unveiled 50 differentially expressed proteins (DEPs), including 18 significantly down-regulated proteins and 32 significantly up-regulated proteins. Among them, the down-regulation of SOS-responsive transcriptional suppressor LexA indicated DNA damage induced severely by FeGlu. Furthermore, FeGlu influenced pathways such as fatty acid metabolism (FadB, FadE), iron-sulfur cluster assembly (IscA, IscU, YadR), iron binding, and DNA-binding transcription, along with α-linolenic acid metabolism, fatty acid degradation, and pyruvate metabolism. These pathways were related to FeGlu stress, including lipid peroxidation and DNA damage. In summary, FeGlu facilitated ferroptosis in E. coli through mechanisms involving lipid peroxidation and DNA damage, which presents a new strategy for the development of innovative antimicrobial strategies targeting E. coli infections.


Asunto(s)
Daño del ADN , Escherichia coli , Ferroptosis , Compuestos Ferrosos , Peroxidación de Lípido , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Compuestos Ferrosos/metabolismo , Compuestos Ferrosos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteómica , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/genética , Escherichia coli O157/metabolismo
14.
J Agric Food Chem ; 72(25): 14337-14348, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38867141

RESUMEN

Thymol has efficient bactericidal activity against a variety of pathogenic bacteria, but the bactericidal mechanism against Vibrio parahemolyticus (V. parahemolyticus) has rarely been reported. In the current study, we investigated the bactericidal mechanism of thymol against V. parahemolyticus. The Results revealed that 150 µg/mL of thymol had 99.9% bactericidal activity on V. parahemolyticus. Intracellular bursts of reactive oxygen species (ROS), Fe2+accumulation, lipid peroxidation, and DNA breakage were checked by cell staining. The exogenous addition of H2O2 and catalase promoted and alleviated thymol-induced cell death to a certain extent, respectively, and the addition of the ferroptosis inhibitor Liproxstatin-1 also alleviated thymol-induced cell death, confirming that thymol induced Fenton-reaction-dependent ferroptosis in V. parahemolyticus. Proteomic analysis revealed that relevant proteins involved in ROS production, lipid peroxidation accumulation, and DNA repair were significantly upregulated after thymol treatment. Molecular docking revealed two potential binding sites (amino acids 46H and 42F) between thymol and ferritin, and thymol could promote the release of Fe2+ from ferritin proteins through in vitro interactions analyzed. Therefore, we hypothesized that ferritin as a potential target may mediate thymol-induced ferroptosis in V. parahemolyticus. This study provides new ideas for the development of natural inhibitors for controlling V. parahemolyticus in aquatic products.


Asunto(s)
Antibacterianos , Ferroptosis , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Timol , Vibrio parahaemolyticus , Ferroptosis/efectos de los fármacos , Timol/farmacología , Timol/química , Especies Reactivas de Oxígeno/metabolismo , Vibrio parahaemolyticus/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Peroxidación de Lípido/efectos de los fármacos , Hierro/metabolismo , Simulación del Acoplamiento Molecular , Ferritinas/genética , Ferritinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
15.
Food Chem ; 457: 140141, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917564

RESUMEN

Glycinin basic peptide (GBP) is the basic polypeptide of soybean glycinin that is isolated using cheap and readily available raw materials (soybean meals). GBP can bear high-temperature processing and has good functional properties, such as emulsification and adhesion properties et al. GBP exhibits broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria as well as fungi. Beyond that, GBP shows enormous application potential to improve the quality and extend the shelf life of food products. This review will systematically provide information on the purification, physicochemical and functional properties of GBP. Moreover, the antimicrobial activities and multi-target antimicrobial mechanism of GBP as well as the applications of GBP in different food products are also reviewed and discussed in detail. This review aims to offer valuable insights for the applications of GBP in the food industry as a promising natural food additive and preservative.


Asunto(s)
Aditivos Alimentarios , Conservantes de Alimentos , Globulinas , Glycine max , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/farmacología , Globulinas/química , Globulinas/farmacología , Glycine max/química , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Aditivos Alimentarios/farmacología , Aditivos Alimentarios/química , Hongos/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Conservación de Alimentos/métodos , Bacterias/efectos de los fármacos
16.
Carbohydr Polym ; 346: 122554, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245535

RESUMEN

Frequent occurrence of wound infection caused by multiple-resistant bacteria (MRB) has posed a serious challenge to the current healthcare system relying on antibiotics. The development of novel antimicrobial materials with high safety and efficacy to heal wound infection is of great importance in combating this crisis. Herein, we prepared a promising antibacterial hydrogel by cross-linking ferrous ions (Fe2+) with the deprotonated carboxyl anion in sodium alginate (Na-ALG) to cure wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Interestingly, ferrous-modified Na-ALG (Fe-ALG) hydrogel demonstrated better properties compared to the traditional Na-ALG-based hydrogels, including injectability, self-healing, appropriate fluidity, high-water retention, potent MRSA-killing efficacy, and excellent biocompatibility. Importantly, the addition of Fe2+ enhances the antibacterial efficacy of the Na-ALG hydrogel, enabling it to effectively eliminate MRSA and accelerate the healing of antibiotic-resistant bacterial-infected wounds in a remarkably short period (10 days). This modification not only facilitates wound closure and fur generation, but also mitigates systemic inflammation, thereby effectively impeding the spread of MRSA to the lungs. Taken together, Fe-ALG hydrogel is a promising therapeutic material for treating wound infections by Staphylococcus aureus, especially by antibiotic-resistant strains like MRSA.


Asunto(s)
Alginatos , Antibacterianos , Compuestos Ferrosos , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Cicatrización de Heridas , Infección de Heridas , Alginatos/química , Alginatos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Masculino
17.
Microbiol Res ; 283: 127704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554652

RESUMEN

Candida albicans is the most leading cause of life-threatening fungal invasive infections, especially for vulvovaginal candidiasis (VVC). Resistance and tolerance to common fungicide has risen great demands on alternative strategies for treating C. albicans infections. In the present study, ferroptosis has been proven to occur in C. albicans by directly exposed to FeSO4 via induing hallmarks of ferroptosis, including Fe2+ overload burden, ROS eruption and lipid peroxidation. Transcriptomic profile gave the great hints of the possible mechanism for fungal ferroptosis that FeSO4 disturb pathways associated to ribosome, tyrosine metabolism, triglyceride metabolism and thiamine metabolism, thus mobilizing death-related gene synthesis. Inspired by the results, a FeSO4-loaded hydrogel was prepared as an antifungal agent to treat C. albicans infection. This hydrogel exhibited excellent dressing properties and maintained superior antifungal activity by characterization tests. Besides, mice treated by this composite hydrogel displayed excellent therapeutic efficacy. These results highlighted the potential therapeutic use of FeSO4 as an innovative strategy in treating C. albicans infections by targeting ferroptosis.


Asunto(s)
Candidiasis Vulvovaginal , Ferroptosis , Compuestos Ferrosos , Humanos , Femenino , Animales , Ratones , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Candida albicans/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Hidrogeles/uso terapéutico , Pruebas de Sensibilidad Microbiana
18.
Food Chem X ; 17: 100554, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36845494

RESUMEN

Numerous counterfeit vintage Baijiu are widely distributed in the market driven by economic interest which disturb the market economic rules and damage the reputation of particular Baijiu brand. Found on the situation, the Baijiu system variation during aging period, aging mechanisms and discrimination strategies for vintage Baijiu are systematically illuminated. The aging mechanisms of Baijiu cover volatilization, oxidation, association, esterification, hydrolysis, formation of colloid molecules and catalysis by metal elements or other raw materials dissolved from storage vessels. The discrimination of aged Baijiu has been performed by electrochemical method, colorimetric sensor array or component characterization coupled with multivariate analysis. Nevertheless, the characterization of non-volatile compounds in aged Baijiu is deficient. Further research on the aging principles, more easy-operation and low-cost discrimination strategies for aged Baijiu are imperative. The above information is favorable to better understand the aging process and mechanisms of Baijiu, and promote the development of artificial aging techniques.

19.
Foods ; 12(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37835287

RESUMEN

Lipids are crucial components for the maintenance oof normal structure and function in the nervous system. Elucidating the diversity of lipids in spinal cords may contribute to our understanding of neurodevelopment. This study comprehensively analyzed the fatty acid (FA) compositions and lipidomes of the spinal cords of eight domesticated animal species: pig, cattle, yak, goat, horse, donkey, camel, and sika deer. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) were the primary FAs in the spinal cords of these domesticated animals, accounting for 72.54-94.23% of total FAs. Notably, oleic acid, stearic acid and palmitic acid emerged as the most abundant FA species. Moreover, untargeted lipidomics by UPLC-Q-Exactive Orbitrap-MS demonstrated that five lipid classes, including glycerophospholipids (GPs), sphingolipids (SPs), glycerolipids (GLs), FAs and saccharolipids (SLs), were identified in the investigated spinal cords, with phosphatidylcholine (PC) being the most abundant among all identified lipid classes. Furthermore, canonical correlation analysis showed that PC, PE, TAG, HexCer-NS and SM were significantly associated with genome sequence data. These informative data provide insight into the structure and function of mammalian nervous tissues and represent a novel contribution to lipidomics.

20.
Foods ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444259

RESUMEN

The increasing incidence of diseases caused by highly carcinogenic aflatoxin M1 (AFM1) in food demands a simple, fast, and cost-effective detection technique capable of sensitively monitoring AFM1. Recent works predominantly focus on the electrochemical aptamer-based biosensor, which still faces challenges and high costs in experimentally identifying an efficient candidate aptamer. However, the direct electrochemical detection of AFM1 has been scarcely reported thus far. In this study, we observed a significant influence on the electrochemical signals of ferric ions at a gold nanoparticle-modified glassy carbon electrode (AuNPs/GCE) by adding varying amounts of AFM1. Utilizing ferricyanide as a sensitive indicator of AFM1, we have introduced a novel approach for detecting AFM1, achieving an unprecedentedly low detection limit of 1.6 × 10-21 g/L. Through monitoring the fluorescence quenching of AFM1 with Fe3+ addition, the interaction between them has been identified at a ratio of 1:936. Transient fluorescence analysis reveals that the fluorescence quenching process is predominantly static. It is interesting that the application of iron chelator diethylenetriaminepentaacetic acid (DTPA) cannot prevent the interaction between AFM1 and Fe3+. With a particle size distribution analysis, it is suggested that a combination of AFM1 and Fe3+ occurs and forms a polymer-like aggregate. Nonetheless, the mutual reaction mechanism between AFM1 and Fe3+ remains unexplained and urgently necessitates unveiling. Finally, the developed sensor is successfully applied for the AFM1 test in real samples, fully meeting the detection requirements for milk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA