Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 25(6): 104355, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35601920

RESUMEN

The unique threonine protease Tasp1 impacts not only ordered development and cell proliferation but also pathologies. However, its substrates and the underlying molecular mechanisms remain poorly understood. We demonstrate that the unconventional Myo1f is a Tasp1 substrate and unravel the physiological relevance of this proteolysis. We classify Myo1f as a nucleo-cytoplasmic shuttle protein, allowing its unhindered processing by nuclear Tasp1 and an association with chromatin. Moreover, we show that Myo1f induces filopodia resulting in increased cellular adhesion and migration. Importantly, filopodia formation was antagonized by Tasp1-mediated proteolysis, supported by an inverse correlation between Myo1f concentration and Tasp1 expression level. The Tasp1/Myo1f-axis might be relevant in human hematopoiesis as reduced Tasp1 expression coincided with increased Myo1f concentrations and filopodia in macrophages compared to monocytes and vice versa. In sum, we discovered Tasp1-mediated proteolysis of Myo1f as a mechanism to fine-tune filopodia formation, inter alia relevant for cells of the immune system.

2.
ChemMedChem ; 17(1): e202100640, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34623765

RESUMEN

Taspase1 is a unique protease not only pivotal for embryonic development but also implicated in leukemia as well as solid tumors. As such, it is a promising target in cancer therapy, although only a limited number of Taspase1 inhibitors lacking general applicability are currently available. Here we present a bivalent guanidiniocarbonyl-pyrrole (GCP)-containing supramolecular ligand that is capable of disrupting the essential interaction between Taspase1 and its cognate import receptor Importin α in a concentration-dependent manner in vitro with an IC50 of 35 µM. Here, size of the bivalent vs the monovalent construct as well as its derivation with an aromatic cbz-group arose as critical determinants for efficient interference of 2GC. This was also evident when we investigated the effects in different tumor cell lines, resulting in comparable EC50 values (∼40-70 µM). Of note, in higher concentrations, 2GC also interfered with Taspase1's proteolytic activity. We thus believe to set the stage for a novel class of Taspase1 inhibitors targeting a pivotal protein-protein interaction prerequisite for its cancer-associated proteolytic function.


Asunto(s)
Endopeptidasas/metabolismo , Guanidina/farmacología , Inhibidores de Proteasas/farmacología , Pirroles/farmacología , alfa Carioferinas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Endopeptidasas/química , Guanidina/química , Humanos , Ligandos , Estructura Molecular , Inhibidores de Proteasas/química , Pirroles/química , Relación Estructura-Actividad , alfa Carioferinas/química , alfa Carioferinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA