Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cells Tissues Organs ; 209(1): 43-53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32392570

RESUMEN

Peripheral nerve injury is a common clinical issue induced by trauma, tumor, and damage caused by treatment. Such factors create chemical and inflammatory alterations at the injury site, which increase nerve deterioration. Thus, minimizing these modifications can lead to nerve protection after injury. The present study sought to evaluate the possible improvement in nerve regeneration and enhancement of functional outcomes by cinnamaldehyde (Cin) administration following sciatic nerve crush in a rat model. Rats (n = 48) were distributed into 6 groups, including sham, injury, DMSO (vehicle group), and Cin groups (10, 30, and 90 mg/kg/day). Using small hemostatic forceps, crush injury was induced in the left sciatic nerve. Thereafter, Cin was administered for 28 successive days. Weekly records were taken for sciatic functional index (SFI) measurements. Further assessments including electrophysiological and histomorphometric evaluations, gastrocnemius muscle wet weight measurements, and estimation of the serum total oxidant status were performed. According to the results, Cin could accelerate sciatic nerve recovery after crush injury, and the dose of 30 mg/kg/day of Cin had better impacts on SFI recovery, muscle mass ratio, and myelin content. The current research demonstrated that Cin positively affects peripheral nerve restoration. Therefore, Cin therapy could be considered as a potential treatment method for peripheral nerve regeneration and its functional recovery. However, more investigations are required to further validate the study results and evaluate the optimal dose of Cin.


Asunto(s)
Acroleína , Nervio Ciático , Animales , Masculino , Ratas , Acroleína/análogos & derivados , Acroleína/metabolismo , Ratas Wistar , Recuperación de la Función , Nervio Ciático/patología
2.
Prog Biomater ; 10(1): 53-64, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33683651

RESUMEN

Peripheral nerve injuries (PNIs) are one of the common causes of morbidity and disability worldwide. Autograft is considered the gold standard treatment for PNIs. However, due to the complications associated with autografts, other sources are considered as alternatives. Recently, electrospun nanofibrous scaffolds have received wide attention in the field of tissue engineering. Exogenous tubular constructs with uniaxially aligned topographical cues to enhance the axonal re-growth are needed to bridge large nerve gaps between proximal and distal ends. Although several studies have used PLGA/PCL, but few studies have been conducted on developing a two-layer scaffold with aligned fibers properly orientated along the axis direction of the sciatic nerve to meet the physical properties required for suturing, transplantation, and nerve regeneration. In this study, we sought to design and develop PLGA-PCL-aligned nanofibers. Following the conventional examinations, we implanted the scaffolds into 7-mm sciatic nerve gaps in a rat model of nerve injury. Our in vivo evaluations did not show any adverse effects, and after eight weeks, an acceptable improvement was noted in the electrophysiological, functional, and histological analyses. Thus, it can be concluded that nanofiber scaffolds can be used as a reliable approach for repairing PNIs. However, further research is warranted.

3.
Biomolecules ; 11(9)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34572585

RESUMEN

A growing body of evidence initially suggested that patients with multiple sclerosis (MS) might be more susceptible to coronavirus disease 2019 (COVID-19). Moreover, it was speculated that patients with MS treated with immunosuppressive drugs might be at risk to develop a severe diseases course after infection with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV2). However, the recently published data have shown that MS patients do not have a higher risk for severe COVID-19. Although there is no indication that patients with MS and immunomodulatory/immunosuppressive therapy are generally at a higher risk of severe COVID-19, it is currently being emphasized that the hazards of poorly treated MS may outweigh the putative COVID-19 dangers. In this review, we discuss the challenges and considerations for MS patients in the COVID-19 pandemic.


Asunto(s)
COVID-19/epidemiología , Inmunosupresores/uso terapéutico , Inmunoterapia , Esclerosis Múltiple , Pandemias , SARS-CoV-2 , Humanos , Inmunosupresores/efectos adversos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia
4.
EXCLI J ; 18: 653-665, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611748

RESUMEN

Being one of the acute clinical problems, peripheral nerve injury can bring about a number of consequences including severe disability, reduced Quality of life (QOL) and immense costs. Currently, melatonin and curcumin are widely applied because of their immunomodulatory, anti-inflammatory, neuro-protective and antioxidant properties. The present study aims to compare the effects of melatonin and curcumin during light and dark periods on sciatic nerve crush injury repair. Accordingly, rats received IP injections of curcumin (100 mg/kg) and melatonin (10 mg/kg) over two periods of light (9:00 a.m.) and dark (9:00 p.m.) for 4 weeks. In order to evaluate rats, functional (walking track analysis and electrophysiological measurements), histomorphometric and gastrocnemius muscle mass investigations were administered. No statistically significant difference was identified between dark and light curcumin groups while curcumin groups displayed better results than did melatonin groups. In addition, dark melatonin group displayed better results than the light melatonin. On the whole, this study found that melatonin and curcumin can be used to quicken neural recovery and help treat nerve injury. It was also found that better neuroregeneration or nerve regeneration was induced when rats were treated by melatonin during the dark period while effects and injection time did not correlate in curcumin application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA