RESUMEN
BACKGROUND: The Canadian prairie ecosystem presents a rich source of natural products from plants that are subjected to herbivory by grazing mammals. This type of ecological competition may contribute to the production of natural products of interest in cell biology and medical research. We provide the first biological description of the sesquiterpene lactone, pulchelloid A, which we isolated from the prairie plant, Gaillardia aristata (Asteraceae) and report that it inhibits mitosis in human cells. METHODS AND RESULTS: We found that G. aristata (Blanket flower) extracts were cytotoxic to human cell lines and used phenotypic assays to characterize the bioactivity of extracts. Before dying, cells were characterized by a rounded morphology, phospho-histone H3 signals, mitotic spindles, and active Cdk1. By biology-guided fractionation of Gaillardia extracts, we isolated a sesquiterpene lactone named pulchelloid A. We used immunofluorescence microscopy and observed that cells treated with pulchelloid A have phospho-histone H3 positive chromosomes and a mitotic spindle, confirming that they were in mitosis. Treated cells arrest with an unusual phenotype; they enter a prolonged mitotic arrest in which the spindles become multipolar and the chromosomes acquire histone γH2AX foci, a hallmark of damaged DNA. CONCLUSIONS: We propose that pulchelloid A, a natural product present in the prairie plant Gaillardia aristata, delays cells in mitosis. There is a growing body of evidence that a small number of members of the sesquiterpene lactone chemical family may target proteins that regulate mitosis.
Asunto(s)
Asteraceae/química , Extractos Vegetales/química , Huso Acromático/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Células HT29 , Humanos , Mitosis/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/genéticaRESUMEN
We are investigating plants from the prairie ecological zone of Canada to identify natural products that inhibit mitosis in cancer cells. Investigation of plant parts from the Canadian plant species Hymenoxys richardsonii (Asteraceae) revealed that leaf extracts (PP-360A) had anti-mitotic activity on human cancer cell lines. Cells treated with leaf extracts acquired a rounded morphology, similar to that of cells in mitosis. We demonstrated that the rounded cells contained mitotic spindles and phospho-histone H3 using the techniques of immunofluorescence microscopy. By biology-guided fractionation of H. richardsonii leaves, we isolated a sesquiterpene lactone named hymenoratin, which had not been previously assigned a biological activity. Cells treated with hymenoratin have phospho-histone H3 positive chromosomes, a mitotic spindle, and enter a prolonged mitotic arrest in which the spindles become distorted. By Western blot analysis, hymenoratin treated cells acquire high levels of cyclin B and dephosphorylated Cdk1. There is a growing body of evidence that select members of the sesquiterpene lactone chemical family have anti-mitotic activity.