Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535170

RESUMEN

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Asunto(s)
Enfermedad de Huntington , Células-Madre Neurales , Humanos , Animales , Ratones , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/metabolismo , Cuerpo Estriado/metabolismo , Diferenciación Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad
2.
BMC Biol ; 21(1): 236, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884994

RESUMEN

BACKGROUND: The recruitment of effector cells is one of the novel functions described for extracellular vesicles (EVs) that needs further study. For instance, cell recruitment by mesenchymal stromal cell derived-EVs (MSC-EVs) is one of the features by which MSC-EVs may induce regeneration and ameliorate tissue injury. On the other hand, increasing evidence suggests that cancer EVs play an important role in the preparation of the pre-metastatic niche (PMN) by recruiting their primary tumour cells. Understanding and measuring the potential of MSC-EVs or cancer-EVs to induce cell migration and recruitment is essential for cell-free therapeutic approaches and/or for a better knowledge of cancer metastasis, respectively. In this context, classical in vitro migration assays do not completely mimic the potential situation by which EVs exert their chemotactic capacity. RESULTS: We adapted an agarose spot migration assay as an in vitro system to evaluate the cell recruitment capacity of locally delivered or localized EVs. Cell migration was tracked for 12 h or 48 h, respectively. Thereafter, endpoint migration images and time-lapse videos were analysed to quantify several parameters aiming to determine the migration of cells to either MSC-EV or pro-metastatic EV. The number of cells contained inside the agarose spots, the migration distance, the area occupied by cells, the directionality of the cell movement, and the Euclidean distance were measured. This multi-parametric evaluation revealed the potential of different MSC-EV preparations to recruit endothelial cells and to detect an enhanced recruitment capacity of highly metastatic PC3-derived EVs (PC3-EVs) compared to low-metastatic LNCaP-EVs in a tumour cell-specific manner. CONCLUSIONS: Overall, this agarose spot migration assay may offer a diversity of measurements and migration settings not provided by classical migration assays and reveal its potential use in the EV field in two different contexts with recruitment in common: regeneration and cancer metastasis.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Medicina Regenerativa , Sefarosa , Factores Quimiotácticos , Células Endoteliales , Neoplasias/terapia
3.
J Cell Mol Med ; 26(3): 937-939, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931446

RESUMEN

The present paper is a commentary to 'Identification and characterization of hADSC-derived exosome proteins from different isolation methods' (Huang et al. 2021; 10.1111/jcmm.16775). Given the enthusiasm for the potential of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs), some considerations deserve attention as they move through successive stages of research and application into humans. We herein remark the prerequisite of generating that evidence ensuring a high consistency in safety, composition and biological activity of the intended MSC-EV preparations, and the suitability of disparate isolation techniques to produce efficacious EV preparations and fulfil requirements for standardized clinical-grade biomanufacturing.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076936

RESUMEN

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV-cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells' interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton's Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV-cell interactions and associated functions.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Comunicación Celular , Vesículas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/metabolismo , Polisacáridos/metabolismo
5.
J Cell Physiol ; 236(2): 1054-1067, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32617972

RESUMEN

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine because of their multipotential and immunoregulatory capacities, while in early pregnancy they could participate in the immunotolerance of the mother towards the embryo. Peripheral blood constitutes an accessible source of MSCs. We successfully isolated peripheral blood MSC (pbMSCs) lines, with or without previous bone marrow mobilization. All pbMSCs lines obtained in both conditions presented classical MSC markers and properties, alkaline phosphatase activity and multipotent capacity to differentiate among adipogenic, osteogenic or chondrogenic lineages, and suppressed the proliferation of T cells. pbMSCs showed migratory capacity without cytokine stimulation while increasing their migration rate in the presence of inflammatory or embryo implantation stimuli. Interestingly, in contrast to MSCs derived from endometrial tissue, three pbMSCs lines also showed increased migration towards the IFN-τ implantation cytokine. Moreover, the secretome produced by an early implantation stage embryonic trophectoderm cell line showed a chemoattractant effect in pbMSCs. Our results suggest that circulating MSCs are present in the peripheral blood under healthy conditions. The fact that both the inflammation and implantation signals induced pbMSCs chemotaxis highlights MSC heterogeneity and suggests that their migratory capacity may differ according to their tissue of origin and would suggest the possible active recruitment of MSCs from bone marrow during pregnancy to repress the immune response to prevent the embryo rejection by the maternal organism.


Asunto(s)
Quimiotaxis/genética , Inflamación/genética , Células Madre Mesenquimatosas/metabolismo , Medicina Regenerativa , Adipogénesis/genética , Animales , Bovinos , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Condrogénesis/genética , Implantación del Embrión/genética , Femenino , Humanos , Inflamación/patología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Relaciones Materno-Fetales/fisiología , Células Madre Mesenquimatosas/fisiología , Osteogénesis/genética
6.
Cytotherapy ; 23(5): 373-380, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33934807

RESUMEN

Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Humanos , Estudios Prospectivos
7.
Cytotherapy ; 22(9): 482-485, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32425691

RESUMEN

STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas/citología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Exosomas/trasplante , Vesículas Extracelulares/trasplante , Humanos , Sociedades Científicas , Tratamiento Farmacológico de COVID-19
8.
Cell Mol Life Sci ; 76(12): 2369-2382, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30891621

RESUMEN

Extracellular vesicles (EVs) include a variety of nanosized vesicles released to the extracellular microenvironment by the vast majority of cells transferring bioactive lipids, proteins, mRNA, miRNA or non-coding RNA, as means of intercellular communication. Remarkably, among other fields of research, their use has become promising for immunomodulation, tissue repair and as source for novel disease-specific molecular signatures or biomarkers. However, a major challenge is to define accurate, reliable and easily implemented techniques for EV isolation due to their nanoscale size and high heterogeneity. In this context, differential ultracentrifugation (dUC) has been the most widely used laboratory methodology, but alternative procedures have emerged to allow purer EV preparations with easy implementation. Here, we present and discuss the most used of the different EV isolation methods, focusing on the increasing impact of size exclusion chromatography (SEC) on the resulting EV preparations from in vitro cultured cells-conditioned medium and biological fluids. Comparatively, low protein content and cryo-electron microscopy analysis show that SEC removes most of the overabundant soluble plasma proteins, which are not discarded using dUC or precipitating agents, while being more user friendly and less time-consuming than gradient-based EV isolation. Also, SEC highly maintains the major EVs' characteristics, including vesicular structure and content, which guarantee forthcoming applications. In sum, together with scaling-up possibilities to increase EV recovery and manufacturing following high-quality standards, SEC could be easily adapted to most laboratories to assist EV-associated biomarker discovery and to deliver innovative cell-free immunomodulatory and pro-regenerative therapies.


Asunto(s)
Cromatografía en Gel/métodos , Vesículas Extracelulares/química , Animales , Precipitación Química , Citometría de Flujo/métodos , Humanos , Dispositivos Laboratorio en un Chip , Ultracentrifugación/métodos , Ultrafiltración/métodos
9.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942629

RESUMEN

Multipotent mesenchymal stromal cells (MSC) represent a promising strategy for a variety of medical applications. Although only a limited number of MSC engraft and survive after in vivo cellular infusion, MSC have shown beneficial effects on immunomodulation and tissue repair. This indicates that the contribution of MSC exists in paracrine signaling, rather than a cell-contact effect of MSC. In this review, we focus on current knowledge about tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) and mechanisms based on extracellular vesicles (EV) that govern long-lasting immunosuppressive and regenerative activity of MSC. In this context, in particular, we discuss the very robust set of findings by Jha and colleagues, and the opportunity to potentially extend their research focus on EV isolated in concentrated conditioned media (CCM) from adipose tissue derived MSC (ASC). Particularly, the authors showed that ASC-CCM mitigated visual deficits after mild traumatic brain injury in mice. TSG-6 knockdown ASC were, then, used to generate TSG-6-depleted CCM that were not able to replicate the alleviation of abnormalities in injured animals. In light of the presented results, we envision that the infusion of much distilled ASC-CCM could enhance the alleviation of visual abnormalities. In terms of EV research, the advantages of using size-exclusion chromatography are also highlighted because of the enrichment of purer and well-defined EV preparations. Taken together, this could further delineate and boost the benefit of using MSC-based regenerative therapies in the context of forthcoming clinical research testing in diseases that disrupt immune system homeostasis.


Asunto(s)
Tejido Adiposo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Medios de Cultivo Condicionados/metabolismo , Humanos
10.
BMC Nephrol ; 19(1): 189, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30064375

RESUMEN

BACKGROUND: Kidney transplantation (KTx) is the best therapeutic approach for chronic kidney diseases leading to irreversible kidney failure. Considering the origin of the graft, several studies have reported differences between living (LD) and deceased donors (DD) in graft and patient survival. These differences seem to be related to multiple factors including, donor age and time of cold ischemia among others. Many of transplanted organs come from old-aged DDs, in which pre-transplant biopsy is recommended. However, kidney biopsy has several limitations, and there is a need to develop alternatives to assess the status of a kidney before transplantation. As the analysis of urinary extracellular vesicles (uEVs) rendered promising results as non-invasive biomarkers of kidney-related pathologies, this pilot study aimed to investigate whether profiling uEVs of LDs and DDs may be of help to assess the quality of the kidney before nephrectomy. METHODS: uEVs from 5 living donors and 7 deceased donors were isolated by size-exclusion chromatography, and their protein and miRNA content were analysed by liquid chromatography followed by mass spectrometry and next generation sequencing, respectively. Then, hierarchical clustering and venn diagrams were done with Perseus software and InteractiVenn tool. Specific EVs data bases were also used for Gene Ontology analysis. RESULTS: Next generation sequencing revealed that uEVs from DDs contained less miRNAs than LDs, but most of the DD-expressed miRNAs were shared with LDs (96%). Only miR-326 (targeting the apoptotic-related Bcl2) was found significantly over-represented in LD. Focusing on the protein content, we detected a low intra-group correlation in both types of donors. Despite these differences, hierarchical clustering of either miRNA or protein data could not identify a differential profile between LDs and DDs. Of note, 90% of transplanted patients had a functional graft after a year from KTx. CONCLUSIONS: In this pilot study we found that, in normo-functional grafts, minor differences in uEVs profile could not discriminate between LDs and DDs.


Asunto(s)
Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica/métodos , Riñón/fisiología , Donadores Vivos , Anciano , Biomarcadores/orina , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Proyectos Piloto , Donantes de Tejidos
13.
Circ Arrhythm Electrophysiol ; 17(5): e012517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666379

RESUMEN

BACKGROUND: Sacubitril/valsartan (Sac/Val) is superior to angiotensin-converting enzyme inhibitors in reducing the risk of heart failure hospitalization and cardiovascular death, but its mechanistic data on myocardial scar after myocardial infarction (MI) are lacking. The objective of this work was to assess the effects of Sac/Val on inflammation, fibrosis, electrophysiological properties, and ventricular tachycardia inducibility in post-MI scar remodeling in swine. METHODS: After MI, 22 pigs were randomized to receive ß-blocker (BB; control, n=8) or BB+Sac/Val (Sac/Val, n=9). The systemic immune response was monitored. Cardiac magnetic resonance data were acquired at 2-day and 29-day post MI to assess ventricular remodeling. Programmed electrical stimulation and high-density mapping were performed at 30-day post MI to assess ventricular tachycardia inducibility. Myocardial samples were collected for histological analysis. RESULTS: Compared with BB, BB+Sac/Val reduced acute circulating leukocytes (P=0.009) and interleukin-12 levels (P=0.024) at 2-day post MI, decreased C-C chemokine receptor type 2 expression in monocytes (P=0.047) at 15-day post MI, and reduced scar mass (P=0.046) and border zone mass (P=0.043). It also lowered the number and mass of border zone corridors (P=0.009 and P=0.026, respectively), scar collagen I content (P=0.049), and collagen I/III ratio (P=0.040). Sac/Val reduced ventricular tachycardia inducibility (P=0.034) and the number of deceleration zones (P=0.016). CONCLUSIONS: After MI, compared with BB, BB+Sac/Val was associated with reduced acute systemic inflammatory markers, reduced total scar and border zone mass on late gadolinium-enhanced magnetic resonance imaging, and lower ventricular tachycardia inducibility.


Asunto(s)
Aminobutiratos , Compuestos de Bifenilo , Cicatriz , Modelos Animales de Enfermedad , Combinación de Medicamentos , Infarto del Miocardio , Miocardio , Taquicardia Ventricular , Valsartán , Remodelación Ventricular , Animales , Valsartán/farmacología , Aminobutiratos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Cicatriz/fisiopatología , Cicatriz/etiología , Cicatriz/patología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/etiología , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/prevención & control , Taquicardia Ventricular/metabolismo , Remodelación Ventricular/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Miocardio/patología , Miocardio/metabolismo , Antiinflamatorios/farmacología , Tetrazoles/farmacología , Fibrosis , Porcinos , Antiarrítmicos/farmacología , Femenino , Masculino , Factores de Tiempo , Imagen por Resonancia Cinemagnética , Frecuencia Cardíaca/efectos de los fármacos
14.
EBioMedicine ; 102: 105060, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490102

RESUMEN

BACKGROUND: In preclinical studies, the use of double allogeneic grafts has shown promising results in promoting tissue revascularization, reducing infarct size, preventing adverse remodelling and fibrosis, and ultimately enhancing cardiac function. Building upon these findings, the safety of PeriCord, an engineered tissue graft consisting of a decellularised pericardial matrix and umbilical cord Wharton's jelly mesenchymal stromal cells, was evaluated in the PERISCOPE Phase I clinical trial (NCT03798353), marking its first application in human subjects. METHODS: This was a double-blind, single-centre trial that enrolled patients with non-acute myocardial infarction eligible for surgical revascularization. Seven patients were implanted with PeriCord while five served as controls. FINDINGS: Patients who received PeriCord showed no adverse effects during post-operative phase and one-year follow-up. No significant changes in secondary outcomes, such as quality of life or cardiac function, were found in patients who received PeriCord. However, PeriCord did modulate the kinetics of circulating monocytes involved in post-infarction myocardial repair towards non-classical inflammation-resolving macrophages, as well as levels of monocyte chemoattractants and the prognostic marker Meteorin-like in plasma following treatment. INTERPRETATION: In summary, the PeriCord graft has exhibited a safe profile and notable immunomodulatory properties. Nevertheless, further research is required to fully unlock its potential as a platform for managing inflammatory-related pathologies. FUNDING: This work was supported in part by grants from MICINN (SAF2017-84324-C2-1-R); Instituto de Salud Carlos III (ICI19/00039 and Red RICORS-TERAV RD21/0017/0022, and CIBER Cardiovascular CB16/11/00403) as a part of the Plan Nacional de I + D + I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) and AGAUR (2021-SGR-01437).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Gelatina de Wharton , Humanos , Calidad de Vida , Corazón , Cordón Umbilical
15.
Biomed Pharmacother ; 158: 114061, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495661

RESUMEN

Fibrosis is present in an important proportion of myocardial disorders. Injury activates cardiac fibroblasts, which deposit excess extracellular matrix, increasing tissue stiffness, impairing cardiac function, and leading to heart failure. Clinical therapies that directly target excessive fibrosis are limited, and more effective treatments are needed. Immunotherapy based on chimeric antigen receptor (CAR) T cells is a novel technique that redirects T lymphocytes toward specific antigens to eliminate the target cells. It is currently used in haematological cancers but has demonstrated efficacy in mouse models of hypertensive cardiac fibrosis, with activated fibroblasts as the target cells. CAR T cell therapy is associated with significant toxicities, but CAR natural killer cells can overcome efficacy and safety limitations. The use of CAR immunotherapy offers a potential alternative to current therapies for fibrosis reduction and restoration of cardiac function in patients with myocardial fibrosis.


Asunto(s)
Cardiomiopatías , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Ratones , Inmunoterapia/métodos , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Cardiomiopatías/tratamiento farmacológico , Fibrosis , Neoplasias/tratamiento farmacológico
16.
Nat Commun ; 14(1): 6627, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863913

RESUMEN

Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.


Asunto(s)
Transducción de Señal , Receptores Toll-Like , Humanos , Microscopía por Crioelectrón , Receptores Toll-Like/metabolismo , Inmunidad Innata , Lisosomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Membrana/metabolismo
17.
Eur J Cell Biol ; 101(3): 151227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35460958

RESUMEN

Extracellular vesicles (EVs) are becoming promising tools for clinical application, either as sources of disease-specific molecular signatures for the unraveling of disease pathophysiology and establishment of novel biomarkers, or as platforms for cell-free nanotherapy. Yet, an unsolved issue is to define standardized techniques for EV isolation allowing data comparison across laboratories worldwide. Considering the difficulties to find this necessary consensus, it has to be stressed out that the outcome of the downstream analysis might be deeply biased by the isolation method, among other variables. Thus, it is crucial that the researcher is aware of the strengths and weaknesses of each method keeping their intended use in mind, and to sufficiently report the methodology details for the results to be comparable and solid. This review aims to present the most widely used EV isolation methods, from the initial differential ultracentrifugation (dUC) to newest approaches.


Asunto(s)
Vesículas Extracelulares , Ultracentrifugación/métodos
18.
Biomed Pharmacother ; 147: 112683, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35144050

RESUMEN

Compelling evidence supports the therapeutic benefit of extracellular vesicles (EVs). EVs are nanostructures with a lipid bilayer membrane that are secreted by multiple cells, including mesenchymal stromal cells (MSCs), as means of cellular communication. MSC-EVs, resembling their MSC origin, carry protected immunomodulatory and pro-regenerative cargoes to targeted neighboring or distant cells and tissues. Though treatments focused on MSC-EVs have emerged as greatly versatile approaches to modulate multiple inflammatory-related conditions, crucial concerns, including the possibility of increasing therapeutic outcomes by pre-conditioning parental MSCs or engineering derived EVs and clarification of the most relevant mechanisms of action, remain. Here, we summarize the large amount of preclinical research surrounding the modulation of beneficial effects by MSC-EVs.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Apoptosis/fisiología , Bioingeniería , Citocinas/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Inmunomodulación/fisiología , Técnicas In Vitro , Ratones , MicroARNs/metabolismo , FN-kappa B/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología
19.
Front Psychol ; 13: 906072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389475

RESUMEN

From March to September 2020, researchers working at a biomedical scientific campus in Spain faced two lockdowns and various mobility restrictions that affected their social and professional lifestyles. The working group "Women in Science," which acts as an independent observatory of scientific gender inequalities on campus launched an online survey to assess the impact of COVID-19 lockdowns on scientific activity, domestic and caregiving tasks, and psychological status. The survey revealed differences in scientific performance by gender: while male researchers participated in a larger number of scientific activities for career development, female researchers performed more invisible scientific tasks, including peer review or outreach activities. Mental impact was greater in researchers caring for children or dependents, and this was aggravated for women. Results spot a disproportionate impact of COVID-19 lockdowns on female scientific career development, and urges for equity measures to mitigate the consequences of an increase in the gender gap in biomedical sciences for current and future pandemics.

20.
Theranostics ; 12(10): 4656-4670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832072

RESUMEN

Rationale: Extracellular vesicles (EVs) from mesenchymal stromal cell (MSC) are a potential therapy for cardiac healing after myocardial infarction (MI). Nevertheless, neither their efficient administration nor therapeutic mechanisms are fully elucidated. Here, we evaluate the preclinical efficacy of a tissue engineering approach to locally deliver porcine cardiac adipose tissue MSC-EV (cATMSC-EV) in an acute MI pig model. Methods: After MI by permanent ligation of the coronary artery, pigs (n = 24) were randomized to Untreated or treated groups with a decellularised pericardial scaffold filled with peptide hydrogel and cATMSC-EV purified by size exclusion chromatography (EV-Treated group) or buffer (Control group), placed over the post-infarcted myocardium. Results: After 30 days, cardiac MRI showed an improved cardiac function in EV-Treated animals, with significantly higher right ventricle ejection fraction (+20.8% in EV-Treated; p = 0.026), and less ventricle dilatation, indicating less myocardial remodelling. Scar size was reduced, with less fibrosis in the distal myocardium (-42.6% Col I in EV-Treated vs Untreated; p = 0.03), a 2-fold increase in vascular density (EV-Treated; p = 0.019) and less CCL2 transcription in the infarct core. EV-treated animals had less macrophage infiltration in the infarct core (-31.7% of CD163+ cells/field in EV-Treated; p = 0.026), but 5.8 times more expressing anti-inflammatory CD73 (p = 0.015). Systemically, locally delivered cATMSC-EV also triggered a systemic effect, doubling the circulating IL-1ra (p = 0.01), and reducing the PBMC rush 2d post-MI, the TNFα and GM-CSF levels at 30d post-MI, and modulating the CD73+ and CCR2+ monocyte populations, related to immunomodulation and fibrosis modulation. Conclusions: These results highlight the potential of cATMSC-EV in modulating hallmarks of ischemic injury for cardiac repair after MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Animales , Modelos Animales de Enfermedad , Fibrosis , Inmunomodulación , Leucocitos Mononucleares , Infarto del Miocardio/patología , Miocardio/patología , Porcinos , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA