Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 194: 106817, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033935

RESUMEN

This study investigates Cystobasidium benthicum (Cb) probiotic yeast and Cyrtocarpa edulis (Ce) fruit dietary effects, single (0.5 %) or combined (Cb:Ce, 0.25:0.25 %), on growth performance, humoral immunity in serum and skin mucus, and intestinal morphology of Nile tilapia (Oreochromis niloticus) after 14 and 28 days. The Cb group presented the highest (P < 0.05) specific growth rate, weight gain, and absolute growth rate with respect to the control group. Immunological assays indicated that Cb, Ce and Cb:Ce groups increased serum nitric oxide concentration compared to the control group (P < 0.05). Cb and Cb:Ce groups showed the highest serum myeloperoxidase enzyme activity at day 14 and 28, respectively (P < 0.05); whereas, Cb:Ce group had the highest (P < 0.05) myeloperoxidase activity in skin mucus. The superoxide dismutase enzyme activity was unaffected. On day 28, Cb, Ce, and Cb:Ce groups showed higher and lower (P < 0.05) catalase enzyme activity in serum and skin mucus, respectively, compared with the control group. Only the Cb group had higher (P < 0.05) total protein concentration in serum (day 14) and skin mucus (day 14 and 28) with respect to the control group. The lysozyme activity in serum (day 28) and skin mucus (day 14) was higher (P < 0.05) in the Cb group compared to the control group. Only the skin mucus of Ce group showed bactericidal activity against Aeromonas dhakensis (P < 0.05). Histological studies indicated that Cb and Cb:Ce groups increased microvilli height, and Cb, Ce and Cb:Ce augmented goblet cell area at day 14 compared to the control group (P < 0.05). At day 28, microvilli height was higher in all groups and the number of intraepithelial leukocytes increased in Cb and Ce groups with respect to the control group (P < 0.05). The ex vivo assay revealed that A. dhakensis in leukocytes decreased cell viability similar to the control group (P < 0.05). A principal component analysis (PCA) confirmed the results. In conclusion, C. benthicum in the diet was the best supplement to improve the growth and immunity of Nile tilapia.

2.
Microb Pathog ; 186: 106488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061668

RESUMEN

Trypanosoma cruzi parasite - causal Chagas disease agent - affects about 7 million people; no vaccine is available, and current medications have not been entirely effective. Multidisciplinary efforts are necessary for developing clinical vaccine prototypes. Thus, this research study aims to assess the expressed and whole-cell administration protection of the oral vaccine prototype Tc24:Co1 using Schizochytrium sp. microalga. High recombinant protein expression yields (675 µg/L) of algal culture were obtained. Additionally, Schizochytrium sp.-Tc24:Co1 resulted stable at 4 °C for up to six months and at 25 °C for three months. After receiving four oral doses of the vaccine, the mice showed a significant humoral immune response and a parasitemia reduction associated with a lack of heart inflammatory damage compared with the unvaccinated controls. The Schizochytrium sp.-Tc24:Co1 vaccine demonstrates to be promising as a prototype for further development showing protective effects against a T. cruzi challenge in a mouse model.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Trypanosoma cruzi , Humanos , Animales , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Proteínas Recombinantes , Modelos Animales de Enfermedad
3.
Microb Pathog ; 169: 105648, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35728750

RESUMEN

Vaccines have saved millions of humans and animals from deadly diseases. Many vaccines are still under development to fight against lethal diseases. Indeed, subunit vaccines are a versatile approach with several advantageous attributes, but they lack strong immunogenicity. Nanotechnology is an avenue to vaccine development because nanoparticles may serve as nanocarriers and adjuvants, which are critical aspects for oral vaccines. This review provides an update of oral organic nanovaccines, describing suitable nanomaterials for oral vaccine design and recent (last five-year view) oral nanovaccine developments to fight against those principal pathogens causing human and animal diseases.


Asunto(s)
Nanopartículas , Virosis , Adyuvantes Inmunológicos , Animales , Humanos , Nanotecnología , Vacunas de Subunidad , Virosis/prevención & control , Virosis/veterinaria
4.
Arch Microbiol ; 204(12): 729, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434432

RESUMEN

Antibiotic bacterial resistant is a huge concern worldwide and probiotics offer an alternative to mitigate it. This study explores Cystobasidium benthicum LR192 as possible probiotic through microbiological and immunological analyses in mouse model. C. benthicum LR192 was isolated from lichens in a hyperarid environment in Baja California Sur, Mexico. First, microbiological analysis was assessed using 1 × 105 CFU/mL in YM broth: resistance to 1% of bile salts and pH of 2, 3 and 5 (control). Then, yeast capacity to adhere onto the intestinal mucosa and safety to mouse splenocytes were tested. Finally, immunological parameters (phagocytic ability, respiratory burst and myeloperoxidase activities, nitric oxide and IgG production) and immune-associated gene expression (IL-1ß, IL-6 and INF-γ) were determined in daily supplemented mice with the yeast (1 × 108 CFU) at days 10 and 15. The results indicate that C. benthicum LR192 has medium resistance to bile salts and low pH, can adhere to the intestine and did not cause cytotoxicity in splenocytes. Immune parameters and immune-related gene expression indicated immunomodulation at day 10 and 15, specially in leucocytes challenged with Escherichia coli. In conclusion, C. benthicum LR192 showed safe potential probiotic properties, but further studies should be performed to confirm it as a probiotic prospect for humans.


Asunto(s)
Probióticos , Saccharomyces cerevisiae , Humanos , Ratones , Animales , México , Ácidos y Sales Biliares , Escherichia coli
5.
Nanotechnology ; 33(29)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35395652

RESUMEN

Nanovaccine development is a growing research field in which the development of new carriers and bioconjugation approaches is a priority. In this sense, this report describes for the first time, the development of a novel conjugate that consists of gold nanoparticles (AuNPs) obtained by a one-step synthesis using an immunogenic peptide of the Lipopolysaccharide-assembly protein LptD fromVibrio parahaemolyticusbacteria as a reducing and capping agent. The resultingLptD@AuNPscompounds were fully characterized and the results showed the high capacity of the peptide to form complexes and reduce gold ions. The reaction yield estimated was higher than 83% and the chemical integrity of the peptide on the NP surface revealed a tyrosine amino acid bonding on the AuNP surface. Furthermore, theLptD@AuNPsystem showed high colloidal stability in a wide pH range (3-11 pH values), where the hydrodynamic diameter and Zeta potential behavior were strongly influenced by the functional groups of the antigenic peptide. The cytotoxicity assays showed that the obtained system is safe for mouse leukocytes, while immunized mice withLptD@AuNPsproduced specific IgG antibodies. These encouraging results revealed the efficacy of some antigenic peptides as reducers and capping agents, in addition, opening the path to determine immunogenicity and immunoprotective efficacy of theLptD@AuNPsystem against the disease induced byVibrio parahaemolyticus.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Anticuerpos , Oro/química , Nanopartículas del Metal/química , Ratones , Péptidos/química
6.
Int J Phytoremediation ; 21(7): 617-623, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873857

RESUMEN

Arsenic contamination of groundwater is a significant problem in countries like Mexico, where San Luis Potosi is among the regions registering severe levels of it. Bioremediation with microalgae capable to absorb and metabolize metals or metalloids like arsenic reduces their toxicity and is a cost-effective approach compared to physical-chemical processes. We evaluated the capability of Chlamydomonas reinhardtii to remove arsenate and compared it with an acr3-modified recombinant strain, which we produced by transforming the wild-type strain with Agrobacterium tumefaciens using the construct pARR1 including a synthetic, optimized acr3 gene from Pteris vittata, a hyper-accumulator of arsenic. We monitored the growth of both strains in media with arsenate, containing a standard or a 10-fold decreased amount of phosphate. Comparing both strains in media initially with 0.5, 1, and 1.5 mg/L of arsenate, the acr3-modified strain removed 1.5 to 3 times more arsenic than the wild-type strain. Moreover, the arsenic uptake rate increased 1.2 to 2.3 times when growing the acr3-modified strain in media with decreased phosphate, while the uptake rate for the wild-type strain scarcely changed under the same conditions. These results confirm the expression of the acr3 gene in C. reinhardtii and its potential application to remove arsenic.


Asunto(s)
Arsénico , Chlamydomonas reinhardtii , Pteris , Biodegradación Ambiental , México , Fosfatos
8.
Planta ; 246(1): 123-132, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28389867

RESUMEN

MAIN CONCLUSION: The plant cell is able to produce the VP40 antigen from the Zaire ebolavirus , retaining the antigenicity and the ability to induce immune responses in BALB/c mice. The recent Ebola outbreak evidenced the need for having vaccines approved for human use. Herein we report the expression of the VP40 antigen from the Ebola virus as an initial effort in the development of a plant-made vaccine that could offer the advantages of being cheap and scalable, which is proposed to overcome the rapid need for having vaccines to deal with future outbreaks. Tobacco plants were transformed by stable DNA integration into the nuclear genome using the CaMV35S promoter and a signal peptide to access the endoplasmic reticulum, reaching accumulation levels up to 2.6 µg g-1 FW leaf tissues. The antigenicity of the plant-made VP40 antigen was evidenced by Western blot and an initial immunogenicity assessment in test animals that revealed the induction of immune responses in BALB/c mice following three weekly oral or subcutaneous immunizations at very low doses (125 and 25 ng, respectively) without accessory adjuvants. Therefore, this plant-based vaccination prototype is proposed as an attractive platform for the production of vaccines in the fight against Ebola virus disease outbreaks.


Asunto(s)
Ebolavirus/inmunología , Ebolavirus/metabolismo , Expresión Génica , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Ebolavirus/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Inmunización , Ratones , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Proteínas de la Matriz Viral/genética
9.
Planta ; 245(6): 1231-1239, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28315001

RESUMEN

MAIN CONCLUSION: A recombinant antigen targeting α-synuclein was produced in the plant cell rendering an immunogenic protein capable to induce humoral responses in mice upon oral administration. Synucleinopathies are neurodegenerative diseases characterized by the abnormal accumulation of α-synuclein (α-Syn, a 140 amino acid protein that normally plays various neurophysiologic roles) aggregates. Parkinson's disease (PD) is the synucleinopathy with the highest epidemiologic impact and although its etiology remains unknown, α-Syn aggregation during disease progression pointed out α-Syn as target in the development of immunotherapies. Herein a chimeric protein, comprising the B subunit of the enterotoxin from enterotoxigenic Escherichia coli and α-Syn epitopes, was expressed in the plant cell having the potential to induce humoral responses following oral immunization. This approach will serve as the basis for the development of oral plant-based vaccines against PD with several potential advantages such as low cost, easy scale-up during production, and easy administration.


Asunto(s)
Células Vegetales/metabolismo , alfa-Sinucleína/metabolismo , Epítopos/genética , Epítopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Enfermedad de Parkinson/inmunología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , alfa-Sinucleína/genética
10.
Planta ; 245(5): 1037-1048, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28194565

RESUMEN

MAIN CONCLUSION: Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps. The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant-based vaccines.


Asunto(s)
Antígenos Helmínticos/inmunología , Carica/metabolismo , Cisticercosis/veterinaria , Enfermedades de los Porcinos/prevención & control , Taenia solium/inmunología , Vacunas Sintéticas/inmunología , Administración Oral , Animales , Antígenos Helmínticos/administración & dosificación , Carica/genética , Carica/inmunología , Cisticercosis/parasitología , Cisticercosis/prevención & control , Femenino , Inmunización , Masculino , Ratones , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente , Porcinos , Enfermedades de los Porcinos/parasitología , Vacunas Sintéticas/administración & dosificación
11.
Plant Cell Rep ; 36(2): 355-365, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27942840

RESUMEN

KEY MESSAGE: An antigenic protein targeting two epitopes from the Zaire ebolavirus GP1 protein was expressed in plant cells rendering an antigen capable of inducing humoral responses in mouse when administered subcutaneously or orally. The 2014 Ebola outbreak made clear that new treatments and prophylactic strategies to fight this disease are needed. Since vaccination is an intervention that could achieve the control of this epidemic disease, exploring the production of new low-cost vaccines is a key path to consider; especially in developing countries. In this context, plants are attractive organisms for the synthesis and delivery of subunit vaccines. This study aimed at producing a chimeric protein named LTB-EBOV, based on the B subunit of the Escherichia coli heat-labile enterotoxin as an immunogenic carrier and two epitopes from the Zaire ebolavirus GP1 protein recognized by neutralizing antibodies. The LTB-EBOV protein was expressed in plant tissues at levels up to 14.7 µg/g fresh leaf tissue and proven to be immunogenic in BALB/c mice when administered by either subcutaneous or oral routes. Importantly, IgA and IgG responses were induced following the oral immunization. The potential use of the plant-made LTB-EBOV protein against EBOV is discussed.


Asunto(s)
Ebolavirus/inmunología , Epítopos/inmunología , Inmunidad Humoral , Células Vegetales/inmunología , Proteínas Recombinantes/metabolismo , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Antígenos Virales/inmunología , ADN Bacteriano/genética , Femenino , Regulación de la Expresión Génica de las Plantas , Ratones Endogámicos BALB C , Membrana Mucosa/inmunología , Mutagénesis Insercional/genética , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Nicotiana/genética , Transgenes
12.
Planta ; 243(3): 675-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26613600

RESUMEN

MAIN CONCLUSION: The Taenia solium HP6/TSOL18 antigen was produced in carrot cells, yielding an immunogenic protein that induced significant protection in an experimental murine model against T. crassiceps cysticercosis when orally administered. This result supports the potential of HP6/TSOL18-carrot as a low-cost anti-cysticercosis vaccine candidate. Cysticercosis is a zoonosis caused by Taenia solium that can be prevented by interrupting the parasite life cycle through pig vaccination. Several injectable vaccine candidates have been reported, but the logistic difficulties and costs for its application limited its use in nationwide control programs. Oral plant-based vaccines can deal with this limitation, because of their easy administration and low cost. A stable expression of the HP6/TSOL18 anti-T. solium cysticercosis protective antigen in carrot calli transformed with an optimized transgene is herein reported. An antigen accumulation up to 14 µg g(-1) of dry-weight biomass was achieved in the generated carrot lines. Mouse immunization with one of the transformed calli induced both specific IgG and IgA anti-HP6/TSOL18 antibodies. A statistically significant reduction in the expected number of T. crassiceps cysticerci was observed in mice orally immunized with carrot-made HP6/TSOL18, in a similar extent to that obtained by subcutaneous immunization with recombinant HP6/TSOL18 protein. In this study, a new oral plant-made version of the HP6/TSOL18 anti-cysticercosis vaccine is reported. The vaccine candidate should be further tested against porcine cysticercosis.


Asunto(s)
Antígenos Helmínticos/inmunología , Cisticercosis/veterinaria , Daucus carota/metabolismo , Taenia solium/inmunología , Administración Oral , Animales , Cisticercosis/parasitología , Cisticercosis/prevención & control , Daucus carota/genética , Femenino , Inmunización , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes , Porcinos , Transgenes , Vacunas
13.
Plant Cell Rep ; 35(5): 1133-41, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26886711

RESUMEN

KEY MESSAGE: An algae-based vaccine model against atherosclerosis was developed with positive findings in terms of antigen yield and immunogenicity in mouse. Several immunotherapies against atherosclerosis have been evaluated at the preclinical level thus far, with some of them currently under evaluation in clinical trials. In particular, the p210 epitope from ApoB100 is known to elicit atheroprotective responses. Considering that Chlamydomonas reinhardtii is an attractive host for the production and delivery of subunit vaccines, in this study a chimeric protein consisting of the B subunit of the cholera toxin and the p210 epitope from ApoB100 (CTB:p210) has been expressed in C. reinhardtii chloroplast as an attempt to establish an oral vaccine candidate against atherosclerosis. The Chlamydomonas-made CTB:p210 protein was successfully expressed at levels of up to 60 µg per g of fresh weight biomass. The antigenic activity of the CTB and the p210 moiety was preserved in the CTB:p210 chimera. Moreover the algae-made CTB:p210 showed an immunogenic activity, when orally administered to BALB/c mice, as evidenced the presence of anti-p210 serum antibodies in mice treated with the algae-derived CTB:p210. The antibody response lasts for at least 80 days after the last boost. This experimental model is proposed as a convenient tool in the development of low cost atherosclerosis vaccines of easy compliance and friendly delivery. Further studies will determine the therapeutic potential of this algae-made vaccine in atherosclerosis animal models.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Aterosclerosis/prevención & control , Vacunas Bacterianas/inmunología , Chlamydomonas reinhardtii/metabolismo , Epítopos/inmunología , Inmunoterapia , Administración Oral , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos , Aterosclerosis/inmunología , Aterosclerosis/terapia , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Toxina del Cólera/genética , Toxina del Cólera/inmunología , Epítopos/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Transporte de Proteínas , Proteínas Recombinantes de Fusión
14.
Plant Cell Rep ; 34(3): 425-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25477207

RESUMEN

KEY MESSAGE: The first report on the recombinant production of a candidate vaccine in the moss system. The need for economical and efficient platforms for vaccine production demands the exploration of emerging host organisms. In this study, the production of an antigenic protein is reported employing the moss Physcomitrella patens as an expression host. A multi-epitope protein from the Human Immunodeficiency Virus (HIV) based on epitopes from gp120 and gp41 was designed as a candidate subunit vaccine and named poly-HIV. Transgenic moss plants were generated carrying the corresponding poly-HIV transgene under a novel moss promoter and subsequently seven positive lines were confirmed by PCR. The poly-HIV protein accumulated up to 3.7 µg g(-1) fresh weight in protonema cultures. Antigenic and immunogenic properties of the moss-produced recombinant poly-HIV are evidenced by Western blots and by mice immunization assays. The elicitation of specific antibodies in mice was observed, reflecting the immunogenic potential of this moss-derived HIV antigen. This is the first report on the production of a potential vaccine in the moss system and opens the avenue for glycoengineering approaches for the production of HIV human-like glycosylated antigens as well as other vaccine prototypes under GMP conditions in moss bioreactors.


Asunto(s)
Bryopsida/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Proteínas Recombinantes/inmunología , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos , Animales , Western Blotting , Epítopos/inmunología , Inmunización , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética
15.
Biotechnol J ; 19(5): e2400091, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719615

RESUMEN

Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.


Asunto(s)
Microalgas , Vacunas Sintéticas , Animales , Humanos , Microalgas/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Infecciones/inmunología , Control de Infecciones
16.
3 Biotech ; 13(1): 28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36590244

RESUMEN

This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1ß) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37889453

RESUMEN

Antimicrobial resistance is an important health concern globally, and probiotics are considered an alternative to minimize it. The present study examined the in vitro probiotic characteristics and in vivo immunomodulatory potential of Bacillus sp. 62A - an extremophile bacterium. Bacillus sp. 62A was evaluated in vitro for its cytotoxicity, hemolytic activity, antibiotic susceptibility, and resistance to gastrointestinal conditions (bile salts, low pH, and intestinal adherence). Additionally, the immunomodulatory effect of Bacillus sp. 62A was studied in mice. The animals were supplemented daily with phosphate-buffered saline (control) and Bacillus sp. 62A at 1 × 108 colony forming units (CFU). Samples were taken on days 5 and 10. Isolated splenocytes were challenged with Escherichia coli for immunological analyses and immune-related gene expression. Serum and feces were collected for IgA and IgG determination. Bacillus sp. 62A did not show cytotoxicity, hemolytic activity, or resistance to antibiotics. Furthermore, the bacterium has autoaggregation and intestinal adhesion capacities and grows in the presence of bile salts and low pH. Bacillus supplementation in mice improved respiratory burst activity, nitric oxide production, and IL-1ß and IL-6 gene expressions, mainly at 10 days. After E. coli challenge, Bacillus supplementation in mice induced an anti-inflammatory response through a decrease in immunological parameters and an increase in IL-10 gene expression. Moreover, serum IgA and IgG and fecal IgG augmented in supplemented mice. In conclusion, Bacillus sp. 62A has biosafe and immunomodulatory probiotic potential.

18.
Mol Biotechnol ; 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344711

RESUMEN

Chagas disease-caused by the parasite Trypanosoma cruzi-is a neglected tropical disease for which available drugs are not fully effective in the chronic stage and a vaccine is not available yet. Microalgae represent a promising platform for the production and oral delivery of low-cost vaccines. Herein, we report a vaccine prototype against T. cruzi produced in a microalgae platform, based on the candidate antigen Tc24 with a C terminus fusion with the Co1 peptide (Tc24:Co1 vaccine prototype). After modeling the tertiary structure, in silico studies suggested that the chimeric protein is antigenic, not allergenic, and molecular docking indicated binding with Toll-like receptors 2 and 4. Thus, Tc24:Co1 was expressed in the marine microalga Schizochytrium sp., and Western blot confirmed the expression at 48 h after induction, with a yield of 632 µg/L of algal culture (300 µg/g of lyophilized algal cells) as measured by the enzyme-linked immunosorbent assay (ELISA). Upon oral administration of whole-cell Schizochytrium sp. expressing Tc24:Co1 (7.5 µg or 15 µg of Tc24:Co1 doses) in mice, specific serum IgG and intestinal mucosa IgA responses were detected in addition to an increase in serum Th1/Th2 cytokines. In conclusion, Schizochytrium sp.-expressing Tc24:Co1 is a promising oral vaccine prototype to be evaluated in an animal model of Trypanosoma cruzi infection.

19.
Vaccines (Basel) ; 10(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35062761

RESUMEN

Vaccines for human use have conventionally been developed by the production of (1) microbial pathogens in eggs or mammalian cells that are then inactivated, or (2) by the production of pathogen proteins in mammalian and insect cells that are purified for vaccine formulation, as well as, more recently, (3) by using RNA or DNA fragments from pathogens. Another approach for recombinant antigen production in the last three decades has been the use of plants as biofactories. Only have few plant-produced vaccines been evaluated in clinical trials to fight against diseases, of which COVID-19 vaccines are the most recent to be FDA approved. In silico tools have accelerated vaccine design, which, combined with transitory antigen expression in plants, has led to the testing of promising prototypes in pre-clinical and clinical trials. Therefore, this review deals with a description of immunoinformatic tools and plant genetic engineering technologies used for antigen design (virus-like particles (VLP), subunit vaccines, VLP chimeras) and the main strategies for high antigen production levels. These key topics for plant-made vaccine development are discussed and perspectives are provided.

20.
Expert Rev Vaccines ; 20(11): 1373-1388, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33612044

RESUMEN

Introduction: Three decades of evidence have demonstrated that plants are an affordable platform for biopharmaceutical production and delivery. For instance, several plant-made recombinant proteins have been approved for commercialization under good manufacturing practice (GMP). Thus far, plant-based vaccine prototypes have been evaluated at pre- and clinical levels. Particularly, plant-made vaccines against parasitic diseases, such as malaria, cysticercosis, and toxoplasmosis have been successfully produced and orally delivered with promising outcomes in terms of immunogenicity and protection. The experience on several approaches and technical strategies over 30 years accounts for their potential low-cost, high scalability, and easy administration.Areas covered: This platform is an open technology to fight against Chagas disease, one of the most important neglected tropical diseases worldwide.Expert opinion: This review provides a perspective for the potential use of plants as a production platform and delivery system of Trypanosoma cruzi recombinant antigens, analyzing the advantages and limitations with respect to plant-made vaccines produced for other parasitic diseases. Plant-made vaccines are envisioned to fight against Chagas disease and other neglected tropical diseases in those countries suffering endemic prevalence.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Vacunas , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/prevención & control , Humanos , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA