Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Microbiol ; 121(6): 1079-1094, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38558208

RESUMEN

Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ribonucleoproteínas , Edición Génica/métodos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Leishmania/genética , Leishmania/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma/genética , Trypanosoma/metabolismo , Transfección
2.
Circ Res ; 132(7): 849-863, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36876496

RESUMEN

BACKGROUND: Removal of circulating plasma low-density lipoprotein cholesterol (LDL-C) by the liver relies on efficient endocytosis and intracellular vesicle trafficking. Increasing the availability of hepatic LDL receptors (LDLRs) remains a major clinical target for reducing LDL-C levels. Here, we describe a novel role for RNF130 (ring finger containing protein 130) in regulating plasma membrane availability of LDLR. METHODS: We performed a combination of gain-of-function and loss-of-function experiments to determine the effect of RNF130 on LDL-C and LDLR recycling. We overexpressed RNF130 and a nonfunctional mutant RNF130 in vivo and measured plasma LDL-C and hepatic LDLR protein levels. We performed in vitro ubiquitination assays and immunohistochemical staining to measure levels and cellular distribution of LDLR. We supplement these experiments with 3 separate in vivo models of RNF130 loss-of-function where we disrupted Rnf130 using either ASO (antisense oligonucleotides), germline deletion, or AAV CRISPR (adeno-associated virus clustered regularly interspaced short palindromic repeats) and measured hepatic LDLR and plasma LDL-C. RESULTS: We demonstrate that RNF130 is an E3 ubiquitin ligase that ubiquitinates LDLR resulting in redistribution of the receptor away from the plasma membrane. Overexpression of RNF130 decreases hepatic LDLR and increases plasma LDL-C levels. Further, in vitro ubiquitination assays demonstrate RNF130-dependent regulation of LDLR abundance at the plasma membrane. Finally, in vivo disruption of Rnf130 using ASO, germline deletion, or AAV CRISPR results in increased hepatic LDLR abundance and availability and decreased plasma LDL-C levels. CONCLUSIONS: Our studies identify RNF130 as a novel posttranslational regulator of LDL-C levels via modulation of LDLR availability, thus providing important insight into the complex regulation of hepatic LDLR protein levels.


Asunto(s)
Hígado , Receptores de LDL , LDL-Colesterol/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Hígado/metabolismo , Proteínas Portadoras/metabolismo , Ubiquitinación , Lipoproteínas LDL/metabolismo
3.
Nature ; 567(7747): 187-193, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814737

RESUMEN

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Asunto(s)
Metabolismo de los Lípidos/genética , Lípidos/análisis , Lípidos/genética , Proteómica , Animales , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Lípidos/clasificación , Hígado/química , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
4.
PLoS Biol ; 19(8): e3001359, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34388147

RESUMEN

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Asunto(s)
Glicerol Quinasa/metabolismo , Glicerol/metabolismo , Hexoquinasa/metabolismo , Microcuerpos/enzimología , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular
5.
Arterioscler Thromb Vasc Biol ; 42(4): 381-394, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35172604

RESUMEN

BACKGROUND: The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS: Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS: Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS: Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.


Asunto(s)
Intestinos , Células Madre , Acilcoenzima A , Animales , Colesterol , Femenino , Masculino , Ratones , Esteroles
6.
PLoS Pathog ; 14(12): e1007502, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30557412

RESUMEN

In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.


Asunto(s)
Gluconeogénesis/fisiología , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología , Animales , Vectores de Enfermedades , Tripanosomiasis Africana
7.
PLoS Pathog ; 11(3): e1004689, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25775470

RESUMEN

Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.


Asunto(s)
Glucosa/metabolismo , Redes y Vías Metabólicas/fisiología , Trypanosoma brucei brucei/metabolismo , Animales , Células Cultivadas , Glicerol/metabolismo , Metabolómica/métodos , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Ácido Succínico/metabolismo
8.
J Biol Chem ; 289(25): 17365-78, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24794874

RESUMEN

Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdk/Δpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdk/Δpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdk/Δpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Homeostasis/fisiología , Proteínas Protozoarias/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Trypanosoma brucei brucei/enzimología , Adenosina Difosfato/genética , Adenosina Trifosfato/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas Protozoarias/genética , Piruvato Ortofosfato Diquinasa/genética , Trypanosoma brucei brucei/genética
9.
J Biol Chem ; 288(25): 18494-505, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23665470

RESUMEN

All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/(RNAi)PGI double mutant when compared with the single mutants, and (iii) the (13)C enrichment of glycolytic and PPP intermediates from cells incubated with [U-(13)C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host.


Asunto(s)
Glucosa/metabolismo , Malato Deshidrogenasa/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato/fisiología , Trypanosoma brucei brucei/metabolismo , Animales , Western Blotting , Células Cultivadas , Citosol/metabolismo , Deshidroepiandrosterona/farmacología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Malato Deshidrogenasa/genética , Espectrometría de Masas , Vía de Pentosa Fosfato/genética , Interferencia de ARN , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Moscas Tse-Tse/parasitología
10.
Mol Microbiol ; 90(1): 114-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23899193

RESUMEN

The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.


Asunto(s)
Carbono/metabolismo , Metabolismo de los Lípidos , Redes y Vías Metabólicas/genética , Treonina/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetatos/metabolismo , Biotransformación , Medios de Cultivo/química , Eliminación de Gen , Glucosa , Espectroscopía de Resonancia Magnética , Genética Inversa , Trypanosoma brucei brucei/genética
11.
J Biol Chem ; 287(21): 17186-17197, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22474284

RESUMEN

Insect stage trypanosomes use an "acetate shuttle" to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F(0)/F(1)-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F(0)/F(1)-ATP synthase F(1)ß subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F(0)/F(1)-ATP synthase, for ATP production in the mitochondrion.


Asunto(s)
Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetil-CoA Hidrolasa/metabolismo , Adenosina Trifosfato/biosíntesis , Coenzima A Transferasas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Acetilcoenzima A/genética , Acetil-CoA Hidrolasa/genética , Coenzima A Transferasas/genética , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Glucosa/genética , Glucosa/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
12.
J Biol Chem ; 285(42): 32312-24, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20702405

RESUMEN

Trypanosoma brucei is a parasitic protist that undergoes a complex life cycle during transmission from its mammalian host (bloodstream forms) to the midgut of its insect vector (procyclic form). In both parasitic forms, most glycolytic steps take place within specialized peroxisomes, called glycosomes. Here, we studied metabolic adaptations in procyclic trypanosome mutants affected in their maintenance of the glycosomal redox balance. T. brucei can theoretically use three strategies to maintain the glycosomal NAD(+)/NADH balance as follows: (i) the glycosomal succinic fermentation branch; (ii) the glycerol 3-phosphate (Gly-3-P)/dihydroxyacetone phosphate (DHAP) shuttle that transfers reducing equivalents to the mitochondrion; and (iii) the glycosomal glycerol production pathway. We showed a hierarchy in the use of these glycosomal NADH-consuming pathways by determining metabolic perturbations and adaptations in single and double mutant cell lines using a combination of NMR, ion chromatography-MS/MS, and HPLC approaches. Although functional, the Gly-3-P/DHAP shuttle is primarily used when the preferred succinate fermentation pathway is abolished in the Δpepck knock-out mutant cell line. In the absence of these two pathways (Δpepck/(RNAi)FAD-GPDH.i mutant), glycerol production is used but with a 16-fold reduced glycolytic flux. In addition, the Δpepck mutant cell line shows a 3.3-fold reduced glycolytic flux compensated by an increase of proline metabolism. The inability of the Δpepck mutant to maintain a high glycolytic flux demonstrates that the Gly-3-P/DHAP shuttle is not adapted to the procyclic trypanosome context. In contrast, this shuttle was shown earlier to be the only way used by the bloodstream forms of T. brucei to sustain their high glycolytic flux.


Asunto(s)
Dihidroxiacetona Fosfato/metabolismo , Glucosa/metabolismo , Glicerofosfatos/metabolismo , Prolina/metabolismo , Ácido Succínico/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Oxidación-Reducción , Consumo de Oxígeno , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Interferencia de ARN
13.
Cell Metab ; 33(8): 1671-1684.e4, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34270928

RESUMEN

FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.


Asunto(s)
Ácidos y Sales Biliares , Enfermedad del Hígado Graso no Alcohólico , Animales , Bilis , Ácidos y Sales Biliares/metabolismo , Humanos , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Fosfatidato Fosfatasa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
14.
Physiol Rep ; 5(3)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28193781

RESUMEN

The processes controlling targeting of glucose transporters to apical and basolateral membranes of polarized cells are complex and not-well understood. We have engineered SGLT1 and GLUT4 constructs linked to fluorescent proteins to highlight the differences in transporter expression and trafficking, in real time, in different cell types. Activity was assessed in parallel using a FRET glucose sensor. In COS cells and HEK cells, SGLT1 was distributed between the plasma membrane and intracellular compartments, but there was little expression in CHO cells. Trafficking was investigated using the lysosome inhibitors NH4Cl (10 mmol/L) and chloroquine (150 µmol/L) and the proteasome inhibitors MG-262 (1 µmol/L) and lactacystin (5 µmol/L). Lysosome inhibitors caused SGLT1 accumulation into intracellular bodies, whereas proteasome inhibitors induced SGLT1 accumulation in the plasma membrane, even in CHO cells. Our data suggest that a fraction of SGLT1 is rapidly degraded by lysosomes and never reached the plasma membrane; another fraction reaches the membrane and is subsequently degraded by lysosomes following internalization. The latter process is regulated by the ubiquitin/proteasome pathway, acting at a late stage of the lysosomal pathway. Using the cholesterol inhibitor MßCD (3 mmol/L), a dominant negative dynamin (K44A) and caveolin, we showed that SGLT1 internalization is lipid raft-mediated, but caveolin-independent. In contrast, GLUT4 internalization is dynamin-dependent, but cholesterol-independent. The physiological relevance of these data is discussed in terms of differential membrane compartmentalization of the transporters and expression under stress conditions.


Asunto(s)
Microdominios de Membrana/metabolismo , Proteolisis , Transportador 1 de Sodio-Glucosa/metabolismo , Animales , Células CHO , Células COS , Polaridad Celular , Chlorocebus aethiops , Cricetulus , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes , Lisosomas/metabolismo , Microscopía Fluorescente/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas
15.
J Clin Invest ; 127(10): 3741-3754, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28891815

RESUMEN

Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and prevents the accumulation of bile acids. Elevated bile acids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7α-hydroxylase (Cyp7a1). Here, we show that FXR activation triggers a rapid posttranscriptional mechanism to degrade Cyp7a1 mRNA. We identified the RNA-binding protein Zfp36l1 as an FXR target gene and determined that gain and loss of function of ZFP36L1 reciprocally regulate Cyp7a1 mRNA and bile acid levels in vivo. Moreover, we found that mice lacking hepatic ZFP36L1 were protected from diet-induced obesity and steatosis. The reduced adiposity and antisteatotic effects observed in ZFP36L1-deficient mice were accompanied by impaired lipid absorption that was consistent with altered bile acid metabolism. Thus, the ZFP36L1-dependent regulation of bile acid metabolism is an important metabolic contributor to obesity and hepatosteatosis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Ácidos y Sales Biliares/genética , Factor 1 de Respuesta al Butirato , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/genética , Hígado Graso/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
16.
PLoS Negl Trop Dis ; 7(12): e2587, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367711

RESUMEN

BACKGROUND: The bloodstream forms of Trypanosoma brucei, the causative agent of sleeping sickness, rely solely on glycolysis for ATP production. It is generally accepted that pyruvate is the major end-product excreted from glucose metabolism by the proliferative long-slender bloodstream forms of the parasite, with virtually no production of succinate and acetate, the main end-products excreted from glycolysis by all the other trypanosomatid adaptative forms, including the procyclic insect form of T. brucei. METHODOLOGY/PRINCIPAL FINDINGS: A comparative NMR analysis showed that the bloodstream long-slender and procyclic trypanosomes excreted equivalent amounts of acetate and succinate from glucose metabolism. Key enzymes of acetate production from glucose-derived pyruvate and threonine are expressed in the mitochondrion of the long-slender forms, which produces 1.4-times more acetate from glucose than from threonine in the presence of an equal amount of both carbon sources. By using a combination of reverse genetics and NMR analyses, we showed that mitochondrial production of acetate is essential for the long-slender forms, since blocking of acetate biosynthesis from both carbon sources induces cell death. This was confirmed in the absence of threonine by the lethal phenotype of RNAi-mediated depletion of the pyruvate dehydrogenase, which is involved in glucose-derived acetate production. In addition, we showed that de novo fatty acid biosynthesis from acetate is essential for this parasite, as demonstrated by a lethal phenotype and metabolic analyses of RNAi-mediated depletion of acetyl-CoA synthetase, catalyzing the first cytosolic step of this pathway. CONCLUSIONS/SIGNIFICANCE: Acetate produced in the mitochondrion from glucose and threonine is synthetically essential for the long-slender mammalian forms of T. brucei to feed the essential fatty acid biosynthesis through the "acetate shuttle" that was recently described in the procyclic insect form of the parasite. Consequently, key enzymatic steps of this pathway, particularly acetyl-CoA synthetase, constitute new attractive drug targets against trypanosomiasis.


Asunto(s)
Acetatos/metabolismo , Sangre/parasitología , Mitocondrias/metabolismo , Trypanosoma brucei brucei/fisiología , Animales , Femenino , Glucosa/metabolismo , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas/genética , Ratones Endogámicos BALB C , Genética Inversa , Ácido Succínico/metabolismo , Análisis de Supervivencia , Treonina/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/metabolismo
17.
Int J Parasitol ; 41(12): 1273-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21907205

RESUMEN

Thiolases are enzymes that remove an acetyl-coenzyme A group from acyl-CoA in the catabolic ß-oxidation of fatty acids, or catalyse the reverse condensation reaction for anabolic processes such as the biosynthesis of sterols and ketone bodies. In humans, six homologous isoforms of thiolase have been described, differing from each other in sequence, oligomeric state, substrate specificity and subcellular localization. A bioinformatics analysis of parasite genomes, being (i) different species of African trypanosomes, (ii) Trypanosoma cruzi and (iii) Leishmania spp., using the six human sequences as queries, showed that the distribution of thiolases in human and each of the studied Trypanosomatidae is completely different. Only one of these isoforms, called SCP2-thiolase, was found in each of the Trypanosomatidae, whereas the TFE-thiolase was also found in T. cruzi and Leishmania spp., and the AB-thiolase only in T. cruzi. Each of the trypanosomatid thiolases clusters with its orthologues from other organisms in a phylogenetic analysis and shares with them the isoform-specific sequence fingerprints. The single T. brucei SCP2-thiolase has been expressed in Escherichia coli and characterized. It shows activity in both the degradative and synthetic directions. Transcripts of this thiolase were detected in both bloodstream- and procyclic-form trypanosomes, but the protein was found only in the procyclic form. The encoded protein has both a predicted N-terminal mitochondrial signal peptide and a C-terminal candidate type 1 peroxisomal-targeting signal for sorting it into glycosomes. However experimentally, only a mitochondrial localization was found for both procyclic trypanosomes grown with glucose and cells cultured with amino acids as an energy source. When the thiolase expression in procyclic cells was knocked down by RNA interference, no important change in growth rate occurred, irrespective of whether the cells were grown with or without glucose, indicating that the metabolic pathway(s) involving this enzyme is/are not essential for the parasite under either of these growth conditions.


Asunto(s)
Acetil-CoA C-Aciltransferasa/genética , Acetil-CoA C-Aciltransferasa/metabolismo , Trypanosoma/enzimología , Clonación Molecular , Análisis por Conglomerados , Biología Computacional/métodos , Escherichia coli/genética , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Isoenzimas/genética , Leishmania/enzimología , Mitocondrias/enzimología , Filogenia , Señales de Clasificación de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA