RESUMEN
Astemizole is a H1-antagonist endowed with antimalarial activity, but has hERG liabilities. Systematic structural modifications of astemizole led to the discovery of analogues that display very potent activity as inhibitors of the growth of the Plasmodium parasite, but show a decreased hERG inhibition, when compared to astemizole. These compounds can be used as starting point for the development of a new class of antimalarials.
Asunto(s)
Antimaláricos/farmacología , Astemizol/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Astemizol/síntesis química , Astemizol/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad , Regulador Transcripcional ERG/antagonistas & inhibidores , Regulador Transcripcional ERG/metabolismoRESUMEN
The human ether-à-go-go channel (hEag1 or KV10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1). The toxin inhibits KV10.1 with an IC50 value of 1.1 µM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a scaffold for the design and synthesis of more potent and safer anticancer drugs.
Asunto(s)
Antineoplásicos/farmacología , Venenos de Cnidarios/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Anémonas de Mar , Toxinas Biológicas/farmacología , Animales , Línea Celular Tumoral/efectos de los fármacos , Concentración 50 Inhibidora , Oocitos/efectos de los fármacos , XenopusRESUMEN
Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded a panel of potent neutralizing antibodies which bind distinct viral epitopes including epitopes conserved in SARS-CoV-1. Structural determination of a non-ACE2 receptor blocking antibody reveals a previously undescribed binding epitope, which is unlikely to be affected by the mutations in any of the recently reported major viral variants including B.1.1.7 (from the UK), B.1.351 (from South Africa) and B.1.1.28 (from Brazil). Finally, by combining sequences of the RBD binding and neutralizing antibodies with the B cell receptor repertoire sequencing, we also describe a highly convergent early antibody response. Similar IgM-derived sequences occur within this study group and also within patient responses described by multiple independent studies published previously.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/prevención & control , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Técnicas de Visualización de Superficie Celular/métodos , Minería de Datos/métodos , Epítopos/inmunología , Humanos , Inmunización Pasiva/métodos , Sueroterapia para COVID-19RESUMEN
The analysis of biological samples, such as whole blood, comes with several sample preparation challenges. Biological matrices often contain a variety of endogenous components that can interfere with the determination of xenobiotics. Especially blood plasma proteins (e.g. serum albumin) are known to interfere with electrospray ionization and result in analyte ion suppression. Sample preparation techniques should guarantee adequate removal of these biomolecules. The current study aims to determine to which extent proteins are removed from whole blood samples, using ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME). A qualitative comparison of the protein presence in extracts of IL-DLLME, solid-phase extraction (SPE) and protein precipitation (PP) was performed, using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, UV/VIS spectrophotometry was used to determine the protein content of a whole blood sample and IL-DLLME, SPE and PP extracts of the same sample. Finally, a quantitative comparison of matrix effects of benzodiazepines present in both whole blood and water samples. SDS-PAGE results showed that IL-DLLME extracts still contained proteins (i.e. albumin, hemoglobin); however, band intensities were comparable to SPE extracts. Spectrophotometric tests showed a total protein content of approximately 2 mg/mL in the final extracts. PP showed the highest protein extraction rate (19 mg/mL). Quantitative ME results showed no significant differences (α = 0.05) between blood and water IL-DLLME extracts. Overall, this is the first study to conclude that IL-DLLME is able to sufficiently remove blood proteins from whole blood samples, in order to avoid significant ion suppression.
Asunto(s)
Proteínas Sanguíneas/análisis , Líquidos Iónicos/química , Microextracción en Fase Líquida/métodos , Xenobióticos/sangre , Benzodiazepinas/sangre , Benzodiazepinas/química , Proteínas Sanguíneas/química , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Humanos , Límite de Detección , Microextracción en Fase Líquida/instrumentación , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodosRESUMEN
Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50â¼26µM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (â¼100µM).
Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Venenos de Escorpión/farmacología , Animales , Cisteína/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Secuencias Hélice-Asa-Hélice , Oocitos , Esporas Fúngicas/efectos de los fármacos , Relación Estructura-Actividad , Xenopus laevis , Levaduras/efectos de los fármacosRESUMEN
In the search for novel anticancer drugs, the potassium channel KV10.1 has emerged as an interesting cancer target. Here, we report a new group of KV10.1 inhibitors, namely the purpurealidin analogs. These alkaloids are produced by the Verongida sponges and are known for their wide variety of bioactivities. In this study, we describe the synthesis and characterization of 27 purpurealidin analogs. Structurally, bromine substituents at the central phenyl ring and a methoxy group at the distal phenyl ring seem to enhance the activity on KV10.1. The mechanism of action of the most potent analog 5 was investigated. A shift of the activation curve to more negative potentials and an apparent inactivation was observed. Since KV10.1 inhibitors can be interesting anticancer drug lead compounds, the effect of 5 was evaluated on cancerous and non-cancerous cell lines. Compound 5 showed to be cytotoxic and appeared to induce apoptosis in all the evaluated cell lines.