Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(3): 536-548.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961578

RESUMEN

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.


Asunto(s)
Sordera/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Empalme Alternativo/genética , Animales , Línea Celular , Exones , Regulación de la Expresión Génica/genética , Células HEK293 , Células Ciliadas Auditivas/fisiología , Audición/genética , Audición/fisiología , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas , Empalme del ARN/genética , Proteínas Represoras/fisiología , Factores de Transcripción , Vorinostat/farmacología
2.
Clin Genet ; 105(5): 584-586, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38454547

RESUMEN

A female proband and her affected niece are homozygous for a novel frameshift variant of CLPP. The proband was diagnosed with severe Perrault syndrome encompassing hearing loss, primary ovarian insufficiency, abnormal brain white matter and developmental delay.


Asunto(s)
Disgenesia Gonadal 46 XX , Pérdida Auditiva Sensorineural , Femenino , Humanos , Disgenesia Gonadal 46 XX/complicaciones , Pérdida Auditiva Sensorineural/diagnóstico , Homocigoto , Linaje
3.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977818

RESUMEN

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Asunto(s)
Tartamudeo , Humanos , Animales , Ratones , Tartamudeo/genética , Tartamudeo/patología , Peptidil-Prolil Isomerasa F , Habla , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico
4.
Hum Genet ; 142(10): 1499-1517, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37668839

RESUMEN

Enlargement of the endolymphatic sac, duct, and vestibular aqueduct (EVA) is the most common inner ear malformation identified in patients with sensorineural hearing loss. EVA is associated with pathogenic variants in SLC26A4. However, in European-Caucasian populations, about 50% of patients with EVA carry no pathogenic alleles of SLC26A4. We tested for the presence of variants in CHD7, a gene known to be associated with CHARGE syndrome, Kallmann syndrome, and hypogonadotropic hypogonadism, in a cohort of 34 families with EVA subjects without pathogenic alleles of SLC26A4. In two families, NM_017780.4: c.3553A > G [p.(Met1185Val)] and c.5390G > C [p.(Gly1797Ala)] were detected as monoallelic CHD7 variants in patients with EVA. At least one subject from each family had additional signs or potential signs of CHARGE syndrome but did not meet diagnostic criteria for CHARGE. In silico modeling of these two missense substitutions predicted detrimental effects upon CHD7 protein structure. Consistent with a role of CHD7 in this tissue, Chd7 transcript and protein were detected in all epithelial cells of the endolymphatic duct and sac of the developing mouse inner ear. These results suggest that some CHD7 variants can cause nonsyndromic hearing loss and EVA. CHD7 should be included in DNA sequence analyses to detect pathogenic variants in EVA patients. Chd7 expression and mutant phenotype data in mice suggest that CHD7 contributes to the formation or function of the endolymphatic sac and duct.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Acueducto Vestibular , Animales , Ratones , Alelos , ADN Helicasas/genética , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética
5.
Clin Genet ; 103(6): 699-703, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36807241

RESUMEN

Hereditary deafness and retinal dystrophy are each genetically heterogenous and clinically variable. Three small unrelated families segregating the combination of deafness and retinal dystrophy were studied by exome sequencing (ES). The proband of Family 1 was found to be compound heterozygous for NM_004525.3: LRP2: c.5005A > G, p.(Asn1669Asp) and c.149C > G, p.(Thr50Ser). In Family 2, two sisters were found to be compound heterozygous for LRP2 variants, p.(Tyr3933Cys) and an experimentally confirmed c.7715 + 3A > T consensus splice-altering variant. In Family 3, the proband is compound heterozygous for a consensus donor splice site variant LRP2: c.8452_8452 + 1del and p.(Cys3150Tyr). In mouse cochlea, Lrp2 is expressed abundantly in the stria vascularis marginal cells demonstrated by smFISH, single-cell and single-nucleus RNAseq, suggesting that a deficiency of LRP2 may compromise the endocochlear potential, which is required for hearing. LRP2 variants have been associated with Donnai-Barrow syndrome and other multisystem pleiotropic phenotypes different from the phenotypes of the four cases reported herein. Our data expand the phenotypic spectrum associated with pathogenic variants in LRP2 warranting their consideration in individuals with a combination of hereditary hearing loss and retinal dystrophy.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Miopía , Distrofias Retinianas , Animales , Ratones , Humanos , Pérdida Auditiva Sensorineural/genética , Sordera/genética , Miopía/genética , Mutación , Linaje , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética
6.
J Neurosci ; 40(15): 2976-2992, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32152201

RESUMEN

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39 However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.


Asunto(s)
Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Pérdida Auditiva Sensorineural/genética , Factor de Crecimiento de Hepatocito/genética , Cresta Neural/crecimiento & desarrollo , Estría Vascular/patología , Animales , Recuento de Células , Oído Interno/anomalías , Femenino , Células Ciliadas Auditivas , Pérdida Auditiva Sensorineural/patología , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cresta Neural/patología , Sondas ARN
7.
J Biol Chem ; 295(45): 15328-15341, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32868297

RESUMEN

Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.


Asunto(s)
Ameloblastos/metabolismo , Esmalte Dental/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , Ratas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética
8.
Hum Mol Genet ; 28(9): 1530-1547, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602030

RESUMEN

Epilepsy, deafness, onychodystrophy, osteodystrophy and intellectual disability are associated with a spectrum of mutations of human TBC1D24. The mechanisms underlying TBC1D24-associated disorders and the functions of TBC1D24 are not well understood. Using CRISPR-Cas9 genome editing, we engineered a mouse with a premature translation stop codon equivalent to human S324Tfs*3, a recessive mutation of TBC1D24 associated with early infantile epileptic encephalopathy (EIEE). Homozygous S324Tfs*3 mice have normal auditory and vestibular functions but show an abrupt onset of spontaneous seizures at postnatal day 15 recapitulating human EIEE. The S324Tfs*3 variant is located in an alternatively spliced micro-exon encoding six perfectly conserved amino acids incorporated postnatally into TBC1D24 protein due to a micro-exon utilization switch. During embryonic and early postnatal development, S324Tfs*3 homozygotes produce predominantly the shorter wild-type TBC1D24 protein isoform that omits the micro-exon. S324Tfs*3 homozygotes show an abrupt onset of seizures at P15 that correlates with a developmental switch to utilization of the micro-exon. A mouse deficient for alternative splice factor SRRM3 impairs incorporation of the Tbc1d24 micro-exon. Wild-type Tbc1d24 mRNA is abundantly expressed in the hippocampus using RNAscope in situ hybridization. Immunogold electron microscopy using a TBC1D24-specific antibody revealed that TBC1D24 is associated with clathrin-coated vesicles and synapses of hippocampal neurons, suggesting a crucial role of TBC1D24 in vesicle trafficking important for neuronal signal transmission. This is the first characterization of a mouse model of human TBC1D24-associated EIEE that can now be used to screen for antiepileptogenic drugs ameliorating TBCID24 seizure disorders.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Alelos , Animales , Biomarcadores , Encéfalo/metabolismo , Análisis Mutacional de ADN , Proteínas Activadoras de GTPasa/metabolismo , Expresión Génica , Sitios Genéticos , Humanos , Masculino , Ratones , Neuronas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Clin Genet ; 99(2): 226-235, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33089500

RESUMEN

Usher syndrome has been historically categorized into one of three classical types based on the patient phenotype. However, the vestibular phenotype does not infallibly predict which Usher genes are mutated. Conversely, the Usher syndrome genotype is not sufficient to reliably predict vestibular function. Here we present a characterization of the vestibular phenotype of 90 patients with clinical presentation of Usher syndrome (59 females), aged 10.9 to 75.5 years, with genetic variants in eight Usher syndromic genes and expand the description of atypical Usher syndrome. We identified unexpected horizontal semicircular canal reactivity in response to caloric and rotational stimuli in 12.5% (3 of 24) and 41.7% (10 of 24), respectively, of our USH1 cohort. These findings are not consistent with the classical phenotypic definition of vestibular areflexia in USH1. Similarly, 17% (6 of 35) of our cohort with USH2A mutations had saccular dysfunction as evidenced by absent cervical vestibular evoked myogenic potentials in contradiction to the classical assumption of normal vestibular function. The surprising lack of consistent genotypic to vestibular phenotypic findings as well as no clear vestibular phenotypic patterns among atypical USH cases, indicate that even rigorous vestibular phenotyping data will not reliably differentiate the three USH types.


Asunto(s)
Síndromes de Usher/genética , Síndromes de Usher/fisiopatología , Vestíbulo del Laberinto/fisiopatología , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Ingestión de Energía , Potenciales Evocados Auditivos , Femenino , Estudios de Asociación Genética , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
10.
Hum Mol Genet ; 27(5): 780-798, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293958

RESUMEN

The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.


Asunto(s)
Pérdida Auditiva/genética , Infertilidad Masculina/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Tirosina Fosfatasas/genética , Animales , Sistemas CRISPR-Cas , Femenino , Estudios de Asociación Genética , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Ratones Mutantes , Linaje , Monoéster Fosfórico Hidrolasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Testículo/fisiopatología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(21): E4271-E4280, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484004

RESUMEN

The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.


Asunto(s)
Células Ciliadas Auditivas/citología , Células Ciliadas Vestibulares/citología , MicroARNs/genética , Mucosa Olfatoria/citología , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Bastones/citología , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Trastornos de la Audición/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Trastornos del Olfato/genética , Mucosa Olfatoria/metabolismo , Equilibrio Postural/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Trastornos de la Sensación/genética , Trastornos de la Visión/genética
12.
Hum Mutat ; 40(1): 53-72, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30303587

RESUMEN

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.


Asunto(s)
Segregación Cromosómica/genética , Consanguinidad , Pérdida Auditiva/genética , Familia , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación/genética , Pakistán , Linaje
13.
Am J Hum Genet ; 98(2): 331-8, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26805784

RESUMEN

The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2(-/-) mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2(-/-) mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2.


Asunto(s)
Genes Recesivos , Pérdida Auditiva/genética , Receptores de Lisoesfingolípidos/genética , Secuencia de Aminoácidos , Pueblo Asiatico/genética , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 19/metabolismo , Exoma , Pérdida Auditiva/diagnóstico , Humanos , Escala de Lod , Modelos Logísticos , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Linaje , Fenotipo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
14.
BMC Genomics ; 19(1): 696, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30241496

RESUMEN

BACKGROUND: Cell type-specific ribosome-pulldown has become an increasingly popular method for analysis of gene expression. It allows for expression analysis from intact tissues and monitoring of protein synthesis in vivo. However, while its utility has been assessed, technical aspects related to sequencing of these samples, often starting with a smaller amount of RNA, have not been reported. In this study, we evaluated the performance of five library prep protocols for ribosome-associated mRNAs when only 250 pg-4 ng of total RNA are used. RESULTS: We obtained total and RiboTag-IP RNA, in three biological replicates. We compared 5 methods of library preparation for Illumina Next Generation sequencing: NuGEN Ovation RNA-Seq system V2 Kit, TaKaRa SMARTer Stranded Total RNA-Seq Kit, TaKaRa SMART-Seq v4 Ultra Low Input RNA Kit, Illumina TruSeq RNA Library Prep Kit v2 and NEBNext® Ultra™ Directional RNA Library Prep Kit using slightly modified protocols each with 4 ng of total RNA. An additional set of samples was processed using the TruSeq kit with 70 ng, as a 'gold standard' control and the SMART-Seq v4 with 250 pg of total RNA. TruSeq-processed samples had the best metrics overall, with similar results for the 4 ng and 70 ng samples. The results of the SMART-Seq v4 processed samples were similar to TruSeq (Spearman correlation > 0.8) despite using lower amount of input RNA. All RiboTag-IP samples had an increase in the intronic reads compared with the corresponding whole tissue, suggesting that the IP captures some immature mRNAs. The SMARTer-processed samples had a higher representation of ribosomal and non-coding RNAs leading to lower representation of protein coding mRNA. The enrichment or depletion of IP samples compared to corresponding input RNA was similar across all kits except for SMARTer kit. CONCLUSION: RiboTag-seq can be performed successfully with as little as 250 pg of total RNA when using the SMART-Seq v4 kit and 4 ng when using the modified protocols of other library preparation kits. The SMART-Seq v4 and TruSeq kits resulted in the highest quality libraries. RiboTag IP RNA contains some immature transcripts.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Análisis de Secuencia de ARN/veterinaria , Transcriptoma , Animales , Inmunoprecipitación , Ratones , Control de Calidad , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Ribosomas/genética
15.
J Med Genet ; 54(10): 665-673, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28780564

RESUMEN

BACKGROUND: Enlargement of the vestibular aqueduct (EVA) is the most common radiological abnormality in children with sensorineural hearing loss. Mutations in coding regions and splice sites of the SLC26A4 gene are often detected in Caucasians with EVA. Approximately one-fourth of patients with EVA have two mutant alleles (M2), one-fourth have one mutant allele (M1) and one-half have no mutant alleles (M0). The M2 genotype is correlated with a more severe phenotype. METHODS: We performed genotype-haplotype analysis and massively parallel sequencing of the SLC26A4 region in patients with M1 EVA and their families. RESULTS: We identified a shared novel haplotype, termed CEVA (Caucasian EVA), composed of 12 uncommon variants upstream of SLC26A4. The presence of the CEVA haplotype on seven of ten 'mutation-negative' chromosomes in a National Institutes of Health M1 EVA discovery cohort and six of six mutation-negative chromosomes in a Danish M1 EVA replication cohort is higher than the observed prevalence of 28 of 1006 Caucasian control chromosomes (p<0.0001 for each EVA cohort). The corresponding heterozygous carrier rate is 28/503 (5.6%). The prevalence of CEVA (11 of 126) is also increased among M0 EVA chromosomes (p=0.0042). CONCLUSIONS: The CEVA haplotype causally contributes to most cases of Caucasian M1 EVA and, possibly, some cases of M0 EVA. The CEVA haplotype of SLC26A4 defines the most common allele associated with hereditary hearing loss in Caucasians. The diagnostic yield and prognostic utility of sequence analysis of SLC26A4 exons and splice sites will be markedly increased by addition of testing for the CEVA haplotype.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de Transporte de Membrana/genética , Acueducto Vestibular/anomalías , Alelos , Niño , Cromosomas Humanos Par 7/genética , Estudios de Cohortes , Femenino , Variación Genética , Genotipo , Haplotipos , Heterocigoto , Humanos , Masculino , Repeticiones de Microsatélite , Análisis de Secuencia de ADN , Transportadores de Sulfato
16.
Am J Hum Genet ; 94(1): 144-52, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24387994

RESUMEN

Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.


Asunto(s)
Proteínas Portadoras/genética , Epilepsia/genética , Mutación , Alelos , Secuencia de Aminoácidos , Cromosomas Humanos Par 16/genética , Consanguinidad , Sordera/genética , Exoma , Exones , Femenino , Proteínas Activadoras de GTPasa , Genes Recesivos , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Heterocigoto , Homocigoto , Humanos , Masculino , Proteínas de la Membrana , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso , Pakistán , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
17.
Clin Genet ; 91(4): 589-598, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27573290

RESUMEN

The genetic underpinnings of recessively inherited moderate to severe sensorineural hearing loss are not well understood, despite its higher prevalence in comparison to profound deafness. We recruited 92 consanguineous families segregating stable or progressive, recessively inherited moderate or severe hearing loss. We utilized homozygosity mapping, Sanger sequencing, targeted capture of known deafness genes with massively parallel sequencing and whole exome sequencing to identify the molecular basis of hearing loss in these families. Variants of the known deafness genes were found in 69% of the participating families with the SLC26A4, GJB2, MYO15A, TMC1, TMPRSS3, OTOF, MYO7A and CLDN14 genes together accounting for hearing loss in 54% of the families. We identified 20 reported and 21 novel variants in 21 known deafness genes; 16 of the 20 reported variants, previously associated with stable, profound deafness were associated with moderate to severe or progressive hearing loss in our families. These data point to a prominent role for genetic background, environmental factors or both as modifiers of human hearing loss severity.


Asunto(s)
Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación/genética , Adolescente , Adulto , Niño , Preescolar , Exoma , Femenino , Genes Recesivos , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad , Adulto Joven
18.
Neurogenetics ; 17(2): 115-123, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26879195

RESUMEN

TMC1 encodes a protein required for the normal function of mechanically activated channels that enable sensory transduction in auditory and vestibular hair cells. TMC1 protein is localized at the tips of the hair cell stereocilia, the site of conventional mechanotransduction. In many populations, loss-of-function recessive mutations of TMC1 are associated with profound deafness across all frequencies tested. In six families reported here, variable moderate-to-severe or moderate-to-profound hearing loss co-segregated with STR (short tandem repeats) markers at the TMC1 locus DFNB7/11. Massively parallel and Sanger sequencing of genomic DNA revealed each family co-segregating hearing loss with a homozygous TMC1 mutation: two reported mutations (p.R34X and p.R389Q) and three novel mutations (p.S596R, p.N199I, and c.1404 + 1G > T). TMC1 cDNA sequence from affected subjects homozygous for the donor splice site transversion c.1404 + 1G > T revealed skipping of exon 16, deleting 60 amino acids from the TMC1 protein. Since the mutations in our study cause less than profound hearing loss, we speculate that there is hypo-functional TMC1 mechanotransduction channel activity and that other even less damaging variants of TMC1 may be associated with more common mild-to-severe sensorineural hearing loss.


Asunto(s)
Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Adolescente , Niño , Genes Recesivos , Pérdida Auditiva/fisiopatología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Linaje , Adulto Joven
19.
Am J Hum Genet ; 92(4): 605-13, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23541340

RESUMEN

Perrault syndrome is a genetically and clinically heterogeneous autosomal-recessive condition characterized by sensorineural hearing loss and ovarian failure. By a combination of linkage analysis, homozygosity mapping, and exome sequencing in three families, we identified mutations in CLPP as the likely cause of this phenotype. In each family, affected individuals were homozygous for a different pathogenic CLPP allele: c.433A>C (p.Thr145Pro), c.440G>C (p.Cys147Ser), or an experimentally demonstrated splice-donor-site mutation, c.270+4A>G. CLPP, a component of a mitochondrial ATP-dependent proteolytic complex, is a highly conserved endopeptidase encoded by CLPP and forms an element of the evolutionarily ancient mitochondrial unfolded-protein response (UPR(mt)) stress signaling pathway. Crystal-structure modeling suggests that both substitutions would alter the structure of the CLPP barrel chamber that captures unfolded proteins and exposes them to proteolysis. Together with the previous identification of mutations in HARS2, encoding mitochondrial histidyl-tRNA synthetase, mutations in CLPP expose dysfunction of mitochondrial protein homeostasis as a cause of Perrault syndrome.


Asunto(s)
Proteasas ATP-Dependientes/genética , Endopeptidasa Clp/genética , Exoma/genética , Genes Recesivos , Disgenesia Gonadal 46 XX/etiología , Pérdida Auditiva Sensorineural/etiología , Mitocondrias/enzimología , Mutación/genética , Proteasas ATP-Dependientes/metabolismo , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Femenino , Homocigoto , Humanos , Hibridación in Situ , Masculino , Mitocondrias/genética , Linaje , Fenotipo , Adulto Joven
20.
J Med Genet ; 52(8): 548-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25941349

RESUMEN

BACKGROUND: Hearing loss is a heterogeneous neurosensory disorder. Mutations of 56 genes are reported to cause recessively inherited non-syndromic deafness. OBJECTIVE: We sought to identify the genetic lesion causing hearing loss segregating in a large consanguineous Pakistani family. METHODS AND RESULTS: Mutations of GJB2 and all other genes reported to underlie recessive deafness were ruled out as the cause of the phenotype in the affected members of the participating family. Homozygosity mapping with a dense array of one million SNP markers allowed us to map the gene for recessively inherited severe hearing loss to chromosome 7q31.2, defining a new deafness locus designated DFNB97 (maximum logarithm of the odds score of 4.8). Whole-exome sequencing revealed a novel missense mutation c.2521T>G (p.F841V) in MET (mesenchymal epithelial transition factor), which encodes the receptor for hepatocyte growth factor. The mutation cosegregated with the hearing loss phenotype in the family and was absent from 800 chromosomes of ethnically matched control individuals as well as from 136 602 chromosomes in public databases of nucleotide variants. Analyses by multiple prediction programmes indicated that p.F841V likely damages MET function. CONCLUSIONS: We identified a missense mutation of MET, encoding the hepatocyte growth factor receptor, as a likely cause of hearing loss in humans.


Asunto(s)
Pérdida Auditiva/genética , Mutación Missense , Proteínas Proto-Oncogénicas c-met/genética , Conexina 26 , Conexinas , Consanguinidad , Femenino , Humanos , Masculino , Linaje , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-met/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA