Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Regul Toxicol Pharmacol ; 92: 382-389, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29278695

RESUMEN

Vismodegib (also known as GDC-0449) is a novel small molecule inhibitor of the Hedgehog (Hh) signaling pathway currently approved for the treatment of metastatic or locally advanced basal cell carcinoma (BCC) in humans. Its tumorigenic potential was assessed in dedicated carcinogenicity studies in rasH2 transgenic (Tg.rasH2) mice and Sprague Dawley (SD) rats. Tumorigenicity potential of vismodegib was identified in rats only and was limited to benign hair follicle tumors, including pilomatricomas and keratoacanthomas at exposures of ≥0.1-fold and ≥0.6-fold, respectively, of the steady-state exposure (AUC0-24h) of the recommended human dose. No malignant tumors were identified in either species. Overall, the totality of pharmacology and nonclinical safety data (lack of genotoxicity, in vitro secondary pharmacological binding, and immunoregulatory effects, and limited effects on the endocrine system) suggests that the development of the benign hair follicle tumors may be related to pharmacologically-mediated disruption of hair follicle morphogenesis, although the exact mechanism of tumorigenesis is unclear. Hair follicle tumors have not been reported in vismodegib-treated patients. The relevance of this finding in rats to patients is uncertain.


Asunto(s)
Anilidas/farmacología , Carcinogénesis/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Carcinogénesis/metabolismo , Femenino , Folículo Piloso/efectos de los fármacos , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo
2.
Regul Toxicol Pharmacol ; 79 Suppl 1: S48-56, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27233925

RESUMEN

The Acceptable Daily Exposure (ADE) derived for pharmaceutical manufacturing is a health-based limit used to ensure that medicines produced in multi-product facilities are safe and are used to validate quality processes. Core to ADE derivation is selecting appropriate point(s) of departure (PoD), i.e., the starting dose of a given dataset that is used in the calculation of the ADE. Selecting the PoD involves (1) data collection and hazard characterization, (2) identification of "critical effects", and (3) a dose-response assessment including the determination of the no-observed-adverse-effect-level (NOAEL) or lowest-observed-adverse-effect-level (LOAEL), or calculating a benchmark dose (BMD) level. Compared to other classes of chemicals, active pharmaceutical ingredients (APIs) are well-characterized and have unique, rich datasets that must be considered when selecting the PoD. Dataset considerations for an API include therapeutic/pharmacological effects, particularities of APIs for different indications and routes of administration, data gaps during drug development, and sensitive subpopulations. Thus, the PoD analysis must be performed by a qualified toxicologist or other expert who also understands the complexities of pharmaceutical datasets. In addition, as the pharmaceutical industry continues to evolve new therapeutic principles, the science behind PoD selection must also evolve to ensure state-of-the-science practices and resulting ADEs.


Asunto(s)
Industria Farmacéutica , Nivel sin Efectos Adversos Observados , Exposición Profesional/prevención & control , Salud Laboral , Preparaciones Farmacéuticas , Animales , Benchmarking , Relación Dosis-Respuesta a Droga , Industria Farmacéutica/legislación & jurisprudencia , Industria Farmacéutica/normas , Guías como Asunto , Política de Salud , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/legislación & jurisprudencia , Exposición Profesional/normas , Salud Laboral/legislación & jurisprudencia , Salud Laboral/normas , Preparaciones Farmacéuticas/clasificación , Preparaciones Farmacéuticas/normas , Farmacocinética , Formulación de Políticas , Medición de Riesgo , Pruebas de Toxicidad
3.
Regul Toxicol Pharmacol ; 79 Suppl 1: S28-38, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27233926

RESUMEN

This manuscript discusses the different historical and more recent default approaches that have been used to derive an acceptable daily exposure (ADE). While it is preferable to derive a health-based ADE based on a complete nonclinical and clinical data package, this is not always possible. For instance, for drug candidates in early development there may be no or limited nonclinical or clinical trial data. Alternative approaches that can support decision making with less complete data packages represent a variety of methods that rely on default assumptions or data inputs where chemical-specific data on health effects are lacking. A variety of default approaches are used including those based on certain toxicity estimates, a fraction of the therapeutic dose, cleaning-based limits, the threshold of toxicological concern (TTC), and application of hazard banding tools such as occupational exposure banding (OEB). Each of these default approaches is discussed in this manuscript, including their derivation, application, strengths, and limitations. In order to ensure patient safety when faced with toxicological and clinical data-gaps, default ADE methods should be purposefully as or more protective than ADEs derived from full data packages. Reliance on the subset of default approaches (e.g., TTC or OEB) that are based on toxicological data is preferred over other methods for establishing ADEs in early development while toxicology and clinical data are still being collected.


Asunto(s)
Industria Farmacéutica , Nivel sin Efectos Adversos Observados , Exposición Profesional/prevención & control , Salud Laboral , Preparaciones Farmacéuticas , Pruebas de Toxicidad/métodos , Animales , Relación Dosis-Respuesta a Droga , Industria Farmacéutica/historia , Industria Farmacéutica/legislación & jurisprudencia , Industria Farmacéutica/normas , Guías como Asunto , Política de Salud , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Dosificación Letal Mediana , Exposición Profesional/efectos adversos , Exposición Profesional/legislación & jurisprudencia , Exposición Profesional/normas , Salud Laboral/historia , Salud Laboral/legislación & jurisprudencia , Salud Laboral/normas , Preparaciones Farmacéuticas/clasificación , Preparaciones Farmacéuticas/historia , Preparaciones Farmacéuticas/normas , Formulación de Políticas , Reproducibilidad de los Resultados , Medición de Riesgo , Pruebas de Toxicidad/historia , Pruebas de Toxicidad/normas
4.
Biomed Chromatogr ; 29(8): 1274-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25677784

RESUMEN

An LC-MS/MS method for the determination of GDC-0980 (apitolisib) concentrations in dog plasma has been developed and validated for the first time to support pre-clinical drug development. Following protein precipitation with acetonitrile, the resulting samples were analyzed using reverse-phase chromatography on a Metasil AQ column. The mass analysis was performed on a triple quadruple mass spectrometer coupled with an electrospray interface in positive ionization mode. The selected reaction monitoring transitions monitored were m/z 499.3 → 341.1 for GDC-0980 and m/z 507.3 → 341.1 for IS. The method was validated over the calibration curve range 0.250-250 ng/mL with linear regression and 1/x(2) weighting. Relative standard deviation (RSD) ranged from 0.0 to 10.9% and accuracy ranged from 93.4 to 113.6% of nominal. Stable-labeled internal standard GDC-0980-d8 was used to minimize matrix effects. This assay was used for the measurement of GDC-0980 dog plasma concentrations to determine toxicokinetic parameters after oral administration of GDC-0980 (0.03, 0.1 and 0.3 mg/kg) to beagle dogs in a GLP toxicology study. Peak concentration ranged from 3.23 to 84.9 ng/mL. GDC-0980 was rapidly absorbed with a mean time to peak concentration ranging from 1.3 to 2.4 h. Mean area under the concentration-time curve from 0 to 24 hours ranged from 54.4 to 542 ng h/mL.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/sangre , Perros/sangre , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pirimidinas/sangre , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Administración Oral , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Femenino , Masculino , Pirimidinas/administración & dosificación , Espectrometría de Masas en Tándem/métodos , Toxicocinética
5.
Birth Defects Res B Dev Reprod Toxicol ; 101(2): 135-43, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24692404

RESUMEN

Vismodegib (Erivedge) is a first-in-class small-molecule hedgehog pathway inhibitor for the treatment of adults with advanced basal-cell carcinoma. Because this pathway is known to play key roles in patterning and growth during vertebrate development, vismodegib was anticipated to be embryotoxic. To support marketing applications, an embryofetal development study was completed in which a limited number of pregnant rats (n = 6/group) was administered vismodegib by oral gavage on gestation days 6 to 17. When vismodegib was administered at ≥60 mg/kg/day, doses associated with evidence of pharmacologic activity in previous rat toxicity studies, all conceptuses were resorbed at an early embryonic stage in the absence of significant maternal toxicity. When administered at 10 mg/kg/day, corresponding to an exposure (AUC0-24h ) approximately 15% of the median in patients at steady state, a variety of malformations were observed, including absent/fused digits in the hindlimb of multiple fetuses, multiple craniofacial abnormalities in one fetus, and an anorectal defect in one fetus. In addition, the incidence of variations, including dilated renal pelvis or ureter and incompletely or unossified skeletal elements, was significantly greater when compared with the controls. These results confirmed that vismodegib is likely to be embryotoxic at clinically relevant maternal exposures, and doses ≥60 mg/kg/day resulted in a 100% incidence of embryolethality that likely resulted from severe defects in early embryonic development. In contrast, craniofacial defects typically associated with hedgehog pathway inhibition were only observed in one fetus at the low dose of 10 mg/kg/day, which likely reflected minimal or intermittent pathway inhibition at low exposures.


Asunto(s)
Anilidas/administración & dosificación , Anilidas/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Feto/efectos de los fármacos , Piridinas/administración & dosificación , Piridinas/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Feto/embriología , Feto/patología , Masculino , Exposición Materna/efectos adversos , Embarazo , Ratas , Ratas Wistar , Toxicocinética
6.
PDA J Pharm Sci Technol ; 76(5): 369-383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35031541

RESUMEN

The threshold of toxicological concern (TTC), i.e., the dose of a compound lacking sufficient experimental toxicity data that is unlikely to result in an adverse health effect in humans, is important for evaluating extractables and leachables (E&Ls) as it guides analytical testing and minimizes the use of animal studies. The Extractables and Leachables Safety Information Exchange (ELSIE) consortium, which consists of member companies that span biotechnology, pharmaceutical, and medical device industries, brought together subject matter expert toxicologists to derive TTC values for organic, non-mutagenic E&L substances when administered parenterally. A total of 488 E&L compounds from the ELSIE database were analyzed and parenteral point of departure (PPOD) estimates were derived for 252 compounds. The PPOD estimates were adjusted to extrapolate to subacute, subchronic, and chronic durations of nonclinical exposure and the lower fifth percentiles were calculated. An additional 100-fold adjustment factor to account for nonclinical species and human variability was subsequently applied to derive the parenteral TTC values for E&Ls. The resulting parenteral TTC values are 35, 110, and 180 µg/day for human exposures of >10 years to lifetime, >1-10 years, and ≤1 year, respectively. These parenteral TTCs are expected to be conservative for E&Ls that are considered non-mutagenic per ICH M7(R1) guidelines.


Asunto(s)
Biotecnología , Nutrición Parenteral , Animales , Humanos , Preparaciones Farmacéuticas
7.
Drug Metab Dispos ; 38(7): 1029-38, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20406853

RESUMEN

Factors determining the pharmacokinetics of 2-chloro-N-(4-chloro-3-(pyridine-2-yl)phenyl)-4-(methylsulfonyl)benzamide (GDC-0449) were investigated using preclinical studies and physiologically based pharmacokinetic (PBPK) modeling. Multiple-dose studies where dogs were given twice-daily oral doses of either 7.5 or 25 mg/kg GDC-0449 showed less than dose-proportional increases in exposure on day 1. At steady state, exposures were comparable between the two dose groups. Oral administration of activated charcoal to dogs receiving oral or intravenous GDC-0449 (25 mg) showed a more rapid decrease in plasma concentrations, suggesting that the concentration gradient driving intestinal membrane permeation was reversible. The biliary clearance of GDC-0449 in dogs was low (0.04 ml/min/kg) and did not account for the majority of the estimated systemic clearance (approximately 19% of systemic clearance). Likewise, in vitro studies using sandwich-cultured human hepatocytes showed negligible biliary excretion. The effect of particle size on oral absorption was shown in a single-dose study where 150 mg of GDC-0449 of two particle sizes was administered. An oral PBPK model was used to investigate mechanisms determining the oral pharmacokinetics of GDC-0449. The overall oral absorption of GDC-0449 appears to depend on the interplay between the dissolution and intestinal membrane permeation processes. A unique feature of GDC-0449 distinguishing it from other Biopharmaceutical Classification System II compounds was that incorporation of the effects of solubility rate-limited absorption and nonsink permeation on the intestinal membrane permeation process was necessary to describe its pharmacokinetic behavior.


Asunto(s)
Anilidas/química , Anilidas/farmacocinética , Proteínas Hedgehog/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacocinética , Administración Oral , Anilidas/administración & dosificación , Animales , Carbón Orgánico/farmacología , Simulación por Computador , Perros , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Hepatocitos/metabolismo , Humanos , Inyecciones Intravenosas , Absorción Intestinal , Masculino , Tamaño de la Partícula , Piridinas/administración & dosificación , Solubilidad
8.
Cancer Res ; 62(18): 5183-8, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12234982

RESUMEN

Although vinyl chloride (VC) clearly induces hepatic angiosarcoma in humans and rodents, a causal association with brain tumors has not been definitively established with the available epidemiological and experimental evidence. Because VC acts by genotoxic mechanisms, DNA adduct formation is thought to be a sensitive biomarker of early events in carcinogenesis. Adult male Sprague Dawley rats were exposed to 0 or 1100 ppm VC for 1 or 4 weeks (6 h/day, 5 days/week) by inhalation. Male weanlings were similarly exposed for 5 days. Another group of male adults was exposed to 1100 ppm [(13)C(2)]VC in a nose-only inhalation apparatus for 5 days (6 h/day). A sensitive gas chromatography high-resolution mass spectrometry assay was used to measure the major promutagenic DNA adduct, N(2),3-ethenoguanine (N(2),3-epsilonG), in rat brain and hepatocyte (HEP) DNA. The respective concentrations of N(2),3-epsilonG in control rat brain DNA at 1 and 4 weeks were 5.0 +/- 0.9 and 5.6 +/- 1.1 N(2),3-epsilonG/10(8) unmodified guanine. There was no change in N(2),3-epsilonG in adult rat brain after exposure to 1100 ppm VC for 1 or 4 weeks. In HEPs from the same animals, these adduct concentrations increased from 5.5 +/- 1.4 to 55 +/- 2.0 N(2),3-epsilonG/10(8) unmodified guanine after a 1-week exposure and from 3.0 +/- 0.3 to 110 +/- 20 N(2),3-epsilonG/10(8) unmodified guanine after a 4-week exposure. When weanlings were exposed to 1100 ppm VC for 5 days, there was a statistically significant (P = 0.04) increase in N(2),3-epsilonG in brain from 1.5 +/- 0.2 to 4.4 +/- 1.1 N(2),3-epsilonG/10(8) unmodified guanine. Weanlings exposed to 1100 ppm VC had an even greater increase in N(2),3-epsilonG in HEPs from 1.6 +/- 0.1 to 97 +/- 5.0 N(2),3-epsilonG/10(8) unmodified guanine. [(13)C(2)]N(2),3-epsilonG was not detected in brain DNA from adult rats exposed to 1100 ppm [(13)C(2)]VC for 5 days but was present in HEP DNA at 55 +/- 4.0 [(13)C(2)]N(2),3-epsilonG/10(8) unmodified guanine. The concentrations of the endogenous adduct in both organs were unchanged after this exposure. 7-(Oxoethyl)guanine (OEG), the major DNA adduct formed by VC, was reduced to 7-(2-hydroxyethyl)guanine and measured by liquid chromatography-electrospray ionization-tandom mass spectrometry in brain and HEP DNA from rats exposed to 1100 ppm VC for 1 week. Whereas 4.0 +/- 0.8 OEG/10(6) unmodified guanine were present in HEP DNA from VC-exposed rats, no adducts were detectable in brain DNA (detection limit, 0.3 OEG/10(6) unmodified guanine). These findings indicate that the genotoxic metabolite of VC is not formed in or transported to adult rat brain. Thus, it is unlikely that N(2),3-epsilonG or other VC-induced promutagenic DNA adducts play a significant role in initiating carcinogenesis in adult rat brain after exposure to VC. The data for weanling rats are less clear. Whereas a small increase in N(2),3-epsilonG in the brains of weanlings was found after exposure to 1100 ppm VC, the resulting adduct concentration was similar to that measured in unexposed adults. Future exposures of weanling rats to the stable isotopically labeled compound will be necessary to conclusively determine whether this increase was due to VC.


Asunto(s)
Encéfalo/efectos de los fármacos , Carcinógenos/toxicidad , Aductos de ADN/biosíntesis , Guanina/análogos & derivados , Guanina/biosíntesis , Hígado/efectos de los fármacos , Cloruro de Vinilo/toxicidad , Administración por Inhalación , Factores de Edad , Animales , Encéfalo/metabolismo , Isótopos de Carbono , ADN/efectos de los fármacos , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray
9.
Cancer Res ; 62(18): 5189-95, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12234983

RESUMEN

Although the DNA adducts of vinyl chloride (VC) have been well characterized, previous studies have used single concentrations of VC that are well above contemporary human exposures. This study examined the exposure response to VC in male Sprague Dawley rats with respect to the molecular dose of the promutagenic DNA adduct N(2),3-ethenoguanine (N(2),3-epsilonG). Adult rats were exposed by inhalation to 0, 10, 100, or 1100 ppm VC for 1 or 4 weeks (6 h/day, 5 days/week). Weanling rats were similarly exposed for 5 days. The amount of N(2),3-epsilonG in hepatocyte (HEP) and nonparenchymal cell (NPC) fractions obtained from the liver was measured with a sensitive immunoaffinity/gas chromatography/high-resolution mass spectrometry assay. Endogenous N(2),3-epsilonG was present in HEPs and NPCs from all unexposed rats. The exposure response to VC in each group and cell population was supralinear, with a linear increase from 0 to 100 ppm, and a plateau between 100 and 1100 ppm. There was no statistically significant difference in N(2),3-epsilonG concentrations between HEPs and NPCs in any adult exposure group, which suggests that factors other than adduct concentrations contribute to the particular susceptibility of NPCs to VC-induced carcinogenesis. The accumulation of N(2),3-epsilonG with respect to time was nearly linear in rats exposed to 600 ppm VC for 1, 2, 4, or 8 weeks (4 h/day, 5 days/week), and no repair of N(2),3-epsilonG was detected in rats exposed to VC for 4 weeks and allowed to recover for 1 week. N(2),3-epsilonG concentrations in HEPs from weanling rats were 2-3-fold greater than those in adult rats exposed for the same time. Higher adduct concentrations in young rats may contribute to their greater susceptibility to VC-induced hepatic angiosarcoma as well as their particular susceptibility to hepatocellular carcinoma. The molecular dosimetry of N(2),3-epsilonG in liver appears to be a sensitive and informative biomarker of genotoxic effect after exposure to VC. N(2),3-epsilonG was the predominant etheno adduct measured in vivo after exposure to VC, and the saturable nature of VC metabolism was reflected in its molecular dose. The relationships between endogenous N(2),3-epsilonG and that formed by low exposures to VC were demonstrated. Conclusions drawn from these exposures may be more relevant for risk assessment purposes than those drawn from high exposures where activation, detoxication, and repair pathways may be saturated or otherwise perturbed. These data are well suited for consideration in future risk assessments of VC that incorporate nontumor mode of action data.


Asunto(s)
Carcinógenos/toxicidad , Aductos de ADN/metabolismo , Reparación del ADN , Guanina/análogos & derivados , Guanina/metabolismo , Cloruro de Vinilo/toxicidad , Administración por Inhalación , Factores de Edad , Animales , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
10.
Curr Protoc Toxicol ; Chapter 3: Unit3.8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23045079

RESUMEN

The major event involved in the formation of mutations and the initiation and progression of cancer is the induction of DNA damage by reactive intermediates arising from exposure to endogenous and exogenous chemicals. Many electrophilic metabolites of chemicals covalently bind to the bases of DNA causing specific DNA adducts. This unit includes protocols for preparing samples of intact DNA and adduct analysis to quantify the number of adducts that can potentially cause mutagenic or carcinogenic damage.


Asunto(s)
Aductos de ADN/análisis , ADN/química , Línea Celular , Aductos de ADN/aislamiento & purificación , Humanos
11.
Curr Protoc Toxicol ; Chapter 3: Unit3.9, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23045080

RESUMEN

This unit contains protocols for analyzing DNA adducts separated from the DNA backbone. HPLC is used to quantify total guanine or ribo- or deoxynucleotides as well as methods for analyzing specific adducts. These methods include HPLC with electrochemical detection, immunoaffininty chromatography to enrich for specific adducts, and gas and liquid chromatography in combination with HPLC and mass spectrometry.


Asunto(s)
Aductos de ADN/análisis , ADN/química , Línea Celular , Cromatografía de Afinidad/métodos , Cromatografía Líquida de Alta Presión/métodos , Técnicas Electroquímicas , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
12.
Regul Toxicol Pharmacol ; 37(1): 105-32, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12662914

RESUMEN

The estimation and characterization of a cancer risk is grounded in the observation of tumors in humans and/or experimental animals. Increasingly, however, other kinds of data (non-tumor data) are finding application in cancer risk assessment. Metabolism and kinetics, adduct formation, genetic damage, mode of action, and biomarkers of exposure, susceptibility, and effects are examples. While these and other parameters have been studied for many important chemicals over the past 30-40 years, their use in risk assessments is more recent, and new insights and opportunities are continuing to unfold. To provide some perspective on this field, the ILSI Risk Science Institute asked a select working group to characterize the pertinent non-tumor data available for 1,3-butadiene, benzene, and vinyl chloride and to comment on the utility of these data in characterizing cancer risks. This paper presents the findings of that working group and concludes with 15 simple principles for the use of non-tumor data in cancer risk assessment.


Asunto(s)
Benceno/toxicidad , Butadienos/toxicidad , Carcinógenos/toxicidad , Cloruro de Vinilo/toxicidad , Animales , Benceno/metabolismo , Benceno/farmacocinética , Biomarcadores/análisis , Butadienos/metabolismo , Butadienos/farmacocinética , Pruebas de Carcinogenicidad , Carcinógenos/metabolismo , Carcinógenos/farmacocinética , Aductos de ADN/metabolismo , Humanos , Pruebas de Mutagenicidad , Neoplasias/inducido químicamente , Medición de Riesgo/métodos , Cloruro de Vinilo/metabolismo , Cloruro de Vinilo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA