Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477535

RESUMEN

Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.


Asunto(s)
Conmoción Encefálica/metabolismo , Encéfalo/metabolismo , Tauopatías/genética , Proteínas tau/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Masculino , Ratones , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Proteínas tau/metabolismo
2.
Mol Ther Oncolytics ; 25: 121-136, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35572197

RESUMEN

Non-coding RNAs, including microRNAs (miRNAs), support the progression of glioma. miR-21 is a small, non-coding transcript involved in regulating gene expression in multiple cellular pathways, including the regulation of proliferation. High expression of miR-21 has been shown to be a major driver of glioma growth. Manipulating the expression of miRNAs is a novel strategy in the development of therapeutics in cancer. In this study we aimed to target miR-21. Using CRISPR genome-editing technology, we disrupted the miR-21 coding sequences in glioma cells. Depletion of this miRNA resulted in the upregulation of many downstream miR-21 target mRNAs involved in proliferation. Phenotypically, CRISPR-edited glioma cells showed reduced migration, invasion, and proliferation in vitro. In immunocompetent mouse models, miR-21 knockout tumors showed reduced growth resulting in an increased overall survival. In summary, we show that by knocking out a key miRNA in glioma, these cells have decreased proliferation capacity both in vitro and in vivo. Overall, we identified miR-21 as a potential target for CRISPR-based therapeutics in glioma.

3.
Trends Neurosci ; 44(3): 215-226, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33234347

RESUMEN

Glioblastoma the most aggressive form of brain cancer, comprises a complex mixture of tumor cells and nonmalignant stromal cells, including neurons, astrocytes, microglia, infiltrating monocytes/macrophages, lymphocytes, and other cell types. All nonmalignant cells within and surrounding the tumor are affected by the presence of glioblastoma. Astrocytes use multiple modes of communication to interact with neighboring cells. Extracellular vesicle-directed intercellular communication has been found to be an important component of signaling between astrocytes and glioblastoma in tumor progression. In this review, we focus on recent findings on extracellular vesicle-mediated bilateral crosstalk, between glioblastoma cells and astrocytes, highlighting the protumor and antitumor roles of astrocytes in glioblastoma development.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Astrocitos , Comunicación Celular , Humanos
4.
Sci Adv ; 6(17): eaax9856, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32494628

RESUMEN

Cytomegalovirus (CMV) is an important cause of morbidity and mortality in the immunocompromised host. In transplant recipients, a variety of clinically important "indirect effects" are attributed to immune modulation by CMV, including increased mortality from fungal disease, allograft dysfunction and rejection in solid organ transplantation, and graft-versus-host-disease in stem cell transplantation. Monocytes, key cellular targets of CMV, are permissive to primary, latent and reactivated CMV infection. Here, pairing unbiased bulk and single cell transcriptomics with functional analyses we demonstrate that human monocytes infected with CMV do not effectively phagocytose fungal pathogens, a functional deficit which occurs with decreased expression of fungal recognition receptors. Simultaneously, CMV-infected monocytes upregulate antiviral, pro-inflammatory chemokine, and inflammasome responses associated with allograft rejection and graft-versus-host disease. Our study demonstrates that CMV modulates both immunosuppressive and immunostimulatory monocyte phenotypes, explaining in part, its paradoxical "indirect effects" in transplantation. These data could provide innate immune targets for the stratification and treatment of CMV disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA