Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Transplant ; 21(2): 787-797, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32594614

RESUMEN

Although innate lymphoid cells (ILCs) play fundamental roles in mucosal barrier functionality and tissue homeostasis, ILC-related mechanisms underlying intestinal barrier function, homeostatic regulation, and graft rejection in intestinal transplantation (ITx) patients have yet to be thoroughly defined. We found protective type 3 NKp44+ ILCs (ILC3s) to be significantly diminished in newly transplanted allografts, compared to allografts at 6 months, whereas proinflammatory type 1 NKp44- ILCs (ILC1s) were higher. Moreover, serial immunomonitoring revealed that in healthy allografts, protective ILC3s repopulate by 2-4 weeks postoperatively, but in rejecting allografts they remain diminished. Intracellular cytokine staining confirmed that NKp44+ ILC3 produced protective interleukin-22 (IL-22), whereas ILC1s produced proinflammatory interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Our findings about the paucity of protective ILC3s immediately following transplant and their repopulation in healthy allografts during the first month following transplant were confirmed by RNA-sequencing analyses of serial ITx biopsies. Overall, our findings show that ILCs may play a key role in regulating ITx graft homeostasis and could serve as sentinels for early recognition of allograft rejection and be targets for future therapies.


Asunto(s)
Inmunidad Innata , Linfocitos , Citocinas , Humanos , Interferón gamma , Intestinos
2.
Am J Transplant ; 21(5): 1878-1892, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33226726

RESUMEN

Graft-versus-host disease (GvHD) is a common, morbid complication after intestinal transplantation (ITx) with poorly understood pathophysiology. Resident memory T cells (TRM ) are a recently described CD69+ memory T cell subset localizing to peripheral tissue. We observed that T effector memory cells (TEM ) in the blood increase during GvHD and hypothesized that they derive from donor graft CD69+TRM migrating into host blood and tissue. To probe this hypothesis, graft and blood lymphocytes from 10 ITx patients with overt GvHD and 34 without were longitudinally analyzed using flow cytometry. As hypothesized, CD4+ and CD8+CD69+TRM were significantly increased in blood and grafts of GvHD patients, alongside higher cytokine and activation marker expression. The majority of CD69+TRM were donor derived as determined by multiplex immunostaining. Notably, CD8/PD-1 was significantly elevated in blood prior to transplantation in patients who later had GvHD, and percentages of HLA-DR, CD57, PD-1, and naïve T cells differed significantly between GvHD patients who died vs. those who survived. Overall, we demonstrate that (1) there were significant increases in TEM at the time of GvHD, possibly of donor derivation; (2) donor TRM in the graft are a possible source; and (3) potential biomarkers for the development and prognosis of GvHD exist.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Médula Ósea , Linfocitos T CD8-positivos , Enfermedad Injerto contra Huésped/etiología , Humanos , Memoria Inmunológica , Subgrupos de Linfocitos T , Trasplante Homólogo
3.
Am J Transplant ; 21(3): 1238-1254, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32882110

RESUMEN

Intestinal transplantation (ITx) can be life-saving for patients with advanced intestinal failure experiencing complications of parenteral nutrition. New surgical techniques and conventional immunosuppression have enabled some success, but outcomes post-ITx remain disappointing. Refractory cellular immune responses, immunosuppression-linked infections, and posttransplant malignancies have precluded widespread ITx application. To shed light on the dynamics of ITx allograft rejection and treatment resistance, peripheral blood samples and intestinal allograft biopsies from 51 ITx patients with severe rejection, alongside 37 stable controls, were analyzed using immunohistochemistry, polychromatic flow cytometry, and reverse transcription-PCR. Our findings inform both immunomonitoring and treatment. In terms of immunomonitoring, we found that while ITx rejection is associated with proinflammatory and activated effector memory T cells in the blood, evidence of treatment efficacy can only be found in the allograft itself, meaning that blood-based monitoring may be insufficient. In terms of treatment, we found that the prominence of intra-graft memory TNF-α and IL-17 double-positive T helper type 17 (Th17) cells is a leading feature of refractory rejection. Anti-TNF-α therapies appear to provide novel and safer treatment strategies for refractory ITx rejection; with responses in 14 of 14 patients. Clinical protocols targeting TNF-α, IL-17, and Th17 warrant further testing.


Asunto(s)
Rechazo de Injerto , Inhibidores del Factor de Necrosis Tumoral , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/etiología , Humanos , Infliximab/uso terapéutico , Intestinos , Trasplante Homólogo
4.
Nat Commun ; 11(1): 2759, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488028

RESUMEN

Human noroviruses are a major cause of diarrheal illness, but pathogenesis is poorly understood. Here, we investigate the cellular tropism of norovirus in specimens from four immunocompromised patients. Abundant norovirus antigen and RNA are detected throughout the small intestinal tract in jejunal and ileal tissue from one pediatric intestinal transplant recipient with severe gastroenteritis. Negative-sense viral RNA, a marker of active viral replication, is found predominantly in intestinal epithelial cells, with chromogranin A-positive enteroendocrine cells (EECs) identified as a permissive cell type in this patient. These findings are consistent with the detection of norovirus-positive EECs in the other three immunocompromised patients. Investigation of the signaling pathways induced in EECs that mediate communication between the gut and brain may clarify mechanisms of pathogenesis and lead to the development of in vitro model systems in which to evaluate norovirus vaccines and treatment.


Asunto(s)
Células Enteroendocrinas/inmunología , Células Epiteliales/inmunología , Norovirus/fisiología , Enfermedad Aguda , District of Columbia , Células Enteroendocrinas/metabolismo , Gastroenteritis/virología , Genotipo , Humanos , Intestino Delgado/patología , Intestino Delgado/virología , Norovirus/genética , ARN Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA