RESUMEN
In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.
Asunto(s)
Envejecimiento , Caenorhabditis elegans , Redes Reguladoras de Genes , Longevidad , Transcriptoma , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Animales , Envejecimiento/genética , Transcriptoma/genética , Longevidad/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , ARN Mensajero/metabolismo , ARN Mensajero/genéticaRESUMEN
Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.
Asunto(s)
Linfocitos B , Tonsila Palatina , Humanos , Adulto , Linfocitos B/metabolismoRESUMEN
The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.
Asunto(s)
Pruebas Genéticas , Genómica , Humanos , Genómica/métodos , Medicina de Precisión/métodosRESUMEN
The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.
Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Pronóstico , Microambiente TumoralRESUMEN
For decades, various strategies have been proposed to solve the enigma of hemoglobinopathies, especially severe cases. However, most of them seem to be lagging in terms of effectiveness and safety. So far, the most prevalent and promising treatment options for patients with ß-types hemoglobinopathies, among others, predominantly include drug treatment and gene therapy. Despite the significant improvements of such interventions to the patient's quality of life, a variable response has been demonstrated among different groups of patients and populations. This is essentially due to the complexity of the disease and other genetic factors. In recent years, a more in-depth understanding of the molecular basis of the ß-type hemoglobinopathies has led to significant upgrades to the current technologies, as well as the addition of new ones attempting to elucidate these barriers. Therefore, the purpose of this article is to shed light on pharmacogenomics, gene addition, and genome editing technologies, and consequently, their potential use as direct and indirect genome-based interventions, in different strategies, referring to drug and gene therapy. Furthermore, all the latest progress, updates, and scientific achievements for patients with ß-type hemoglobinopathies will be described in detail.
Asunto(s)
Anemia de Células Falciformes/terapia , Hemoglobinopatías/terapia , Globinas beta/genética , Talasemia beta/terapia , Anemia de Células Falciformes/genética , Edición Génica/métodos , Terapia Genética/tendencias , Hemoglobinopatías/sangre , Hemoglobinopatías/genética , Humanos , Globinas beta/uso terapéutico , Talasemia beta/genéticaRESUMEN
Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell.
Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Células HCT116 , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Transducción de Señal , Proteína 1 de Unión a la Caja Y/genéticaRESUMEN
The mechanisms used by antisense transcripts to regulate their corresponding sense mRNAs are not fully understood. Herein, we have addressed this issue for the vimentin (VIM) gene, a member of the intermediate filament family involved in cell and tissue integrity that is deregulated in different types of cancer. VIM mRNA levels are positively correlated with the expression of a previously uncharacterized head-to-head antisense transcript, both transcripts being silenced in colon primary tumors concomitant with promoter hypermethylation. Furthermore, antisense transcription promotes formation of an R-loop structure that can be disfavored in vitro and in vivo by ribonuclease H1 overexpression, resulting in VIM down-regulation. Antisense knockdown and R-loop destabilization both result in chromatin compaction around the VIM promoter and a reduction in the binding of transcriptional activators of the NF-κB pathway. These results are the first examples to our knowledge of R-loop-mediated enhancement of gene expression involving head-to-head antisense transcription at a cancer-related locus.
Asunto(s)
Oligonucleótidos Antisentido/genética , Regiones Promotoras Genéticas , Transcripción Genética , Activación Transcripcional , Vimentina/genética , Línea Celular Tumoral , Cromatina/química , Inmunoprecipitación de Cromatina , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Islas de CpG , ADN/química , Metilación de ADN , Silenciador del Gen , Humanos , Hibridación Fluorescente in Situ , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleosomas/química , ARN/químicaRESUMEN
BACKGROUND & AIMS: There are few validated biomarkers that can be used to predict outcomes for patients with colorectal cancer. Part of the challenge is the genetic and molecular heterogeneity of colorectal tumors not only among patients, but also within tumors. We have explored intratumor heterogeneity at the epigenetic level, due to its dynamic nature. We analyzed DNA methylation profiles of the digestive tract surface and the central bulk and invasive front regions of colorectal tumors. METHODS: We determined the DNA methylation profiles of >450,000 CpG sites in 3 macrodissected regions of 79 colorectal tumors and 23 associated liver metastases, obtained from 2 hospitals in Spain. We also analyzed samples for KRAS and BRAF mutations, 499,170 single nucleotide polymorphisms, and performed immunohistochemical analyses. RESULTS: We observed differences in DNA methylation among the 3 tumor sections; regions of tumor-host interface differed the most from the other tumor sections. Interestingly, tumor samples collected from areas closer to the gastrointestinal transit most frequently shared methylation events with metastases. When we calculated individual coefficients to quantify heterogeneity, we found that epigenetic homogeneity was significantly associated with short time of relapse-free survival (log-rank P = .037) and short time of overall survival (log-rank P = .026) in patients with locoregional colorectal cancer. CONCLUSIONS: In an analysis of 79 colorectal tumors, we found significant heterogeneity in patterns of DNA methylation within each tumor; the level of heterogeneity correlates with times of relapse-free and overall survival.
Asunto(s)
Adenocarcinoma/genética , Neoplasias Colorrectales/genética , Metilación de ADN , Epigénesis Genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Estudios Retrospectivos , Análisis de SupervivenciaRESUMEN
BACKGROUND: Cancer of unknown primary ranks in the top ten cancer presentations and has an extremely poor prognosis. Identification of the primary tumour and development of a tailored site-specific therapy could improve the survival of these patients. We examined the feasability of using DNA methylation profiles to determine the occult original cancer in cases of cancer of unknown primary. METHODS: We established a classifier of cancer type based on the microarray DNA methylation signatures (EPICUP) in a training set of 2790 tumour samples of known origin representing 38 tumour types and including 85 metastases. To validate the classifier, we used an independent set of 7691 known tumour samples from the same tumour types that included 534 metastases. We applied the developed diagnostic test to predict the tumour type of 216 well-characterised cases of cancer of unknown primary. We validated the accuracy of the predictions from the EPICUP assay using autopsy examination, follow-up for subsequent clinical detection of the primary sites months after the initial presentation, light microscopy, and comprehensive immunohistochemistry profiling. FINDINGS: The tumour type classifier based on the DNA methylation profiles showed a 99·6% specificity (95% CI 99·5-99·7), 97·7% sensitivity (96·1-99·2), 88·6% positive predictive value (85·8-91·3), and 99·9% negative predictive value (99·9-100·0) in the validation set of 7691 tumours. DNA methylation profiling predicted a primary cancer of origin in 188 (87%) of 216 patients with cancer with unknown primary. Patients with EPICUP diagnoses who received a tumour type-specific therapy showed improved overall survival compared with that in patients who received empiric therapy (hazard ratio [HR] 3·24, p=0·0051 [95% CI 1·42-7·38]; log-rank p=0·0029). INTERPRETATION: We show that the development of a DNA methylation based assay can significantly improve diagnoses of cancer of unknown primary and guide more precise therapies associated with better outcomes. Epigenetic profiling could be a useful approach to unmask the original primary tumour site of cancer of unknown primary cases and a step towards the improvement of the clinical management of these patients. FUNDING: European Research Council (ERC), Cellex Foundation, the Institute of Health Carlos III (ISCIII), Cancer Australia, Victorian Cancer Agency, Samuel Waxman Cancer Research Foundation, the Health and Science Departments of the Generalitat de Catalunya, and Ferrer.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Neoplasias Primarias Desconocidas/genética , Receptores ErbB/genética , Femenino , Humanos , Masculino , Neoplasias Primarias Desconocidas/clasificación , Neoplasias Primarias Desconocidas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas p21(ras)/genética , Estudios RetrospectivosRESUMEN
PURPOSE: Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. METHODS: We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. RESULTS: We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. CONCLUSIONS: Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability.Genet Med 18 1, 378-385.
Asunto(s)
Discapacidad Intelectual/genética , Histona Demetilasas con Dominio de Jumonji/genética , Mutación , Oxidorreductasas N-Desmetilantes/genética , Síndrome de Rett/genética , Adulto , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Encéfalo/patología , Secuencia Conservada , Análisis Mutacional de ADN , Femenino , Expresión Génica , Orden Génico , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Discapacidad Intelectual/diagnóstico , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Persona de Mediana Edad , Modelos Moleculares , Neuronas/metabolismo , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/metabolismo , Posición Específica de Matrices de Puntuación , Conformación Proteica , Transporte de Proteínas , Síndrome de Rett/diagnósticoRESUMEN
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting.
Asunto(s)
Antineoplásicos/farmacología , Enoxacino/farmacología , MicroARNs/metabolismo , Neoplasias/patología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , MicroARNs/biosíntesis , Mutación/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoAsunto(s)
Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Linfoma de Células del Manto/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Células A549 , Animales , Células HCT116 , Células Hep G2 , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Linfoma de Células del Manto/enzimología , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Células MCF-7 , Ratones , Ratones SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células PC-3 , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and different conditions. Human induced pluripotent stem cells are uniquely suited to study these context-dependent effects but cell lines from hundreds or thousands of individuals are required. Village cultures, where multiple induced pluripotent stem lines are cultured and differentiated in a single dish, provide an elegant solution for scaling induced pluripotent stem experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned to an induced pluripotent stem line using single-cell sequencing and illustrating that the genetic, epigenetic or induced pluripotent stem line-specific effects explain a large percentage of gene expression variation for many genes. We demonstrate that village methods can effectively detect induced pluripotent stem line-specific effects, including sensitive dynamics of cell states.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular , Diferenciación Celular/genética , FenotipoRESUMEN
Much effort in cancer research has focused on the tiny part of our genome that codes for mRNA. However, it has recently been recognized that microRNAs also contribute decisively to tumorigenesis. Studies have also shown that epigenetic silencing by CpG island hypermethylation of microRNAs with tumor suppressor activities is a common feature of human cancer. The importance of other classes of non-coding RNAs, such as long intergenic ncRNAs (lincRNAs) and transcribed ultraconserved regions (T-UCRs) as altered elements in neoplasia, is also gaining recognition. Thus, we wondered whether there were other ncRNAs undergoing CpG island hypermethylation-associated inactivation in cancer cells. We focused on the small nucleolar RNAs (snoRNAs), a subset of ncRNA with a wide variety of cellular functions, such as chemical modification of RNA, pre-RNA processing and control of alternative splicing. By data mining snoRNA databases and the scientific literature, we selected 49 snoRNAs that had a CpG island within ≤ 2 Kb or that were processed from a host gene with a 5'-CpG island. Bisulfite genomic sequencing of multiple clones in normal colon mucosa and the colorectal cancer cell line HCT-116 showed that 46 snoRNAs were equally methylated in the two samples: completely unmethylated (n = 26) or fully methylated (n = 20). Most interestingly, the host gene-associated 5'-CpG islands of the snoRNAs SNORD123, U70C and ACA59B were hypermethylated in the cancer cells but not in the corresponding normal tissue. CpG island hypermethylation was associated with the transcriptional silencing of the respective snoRNAs. Results of a DNA methylation microarray platform in a comprehensive collection of normal tissues, cancer cell lines and primary malignancies demonstrated that the observed hypermethylation of snoRNAs was a common feature of various tumor types, particularly in leukemias. Overall, our findings indicate the existence of a new subclass of ncRNAs, snoRNAs, that are targeted by epigenetic inactivation in human cancer.
Asunto(s)
Islas de CpG , Metilación de ADN , Silenciador del Gen , Neoplasias/genética , ARN Nuclear Pequeño/genética , Transformación Celular Neoplásica/genética , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , ARN Nuclear Pequeño/metabolismo , Análisis de Secuencia de ADNRESUMEN
Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.
Asunto(s)
Neoplasias Encefálicas/inmunología , Líquido Cefalorraquídeo/inmunología , Leucocitos , Microambiente Tumoral/inmunología , Adenocarcinoma del Pulmón , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , PronósticoRESUMEN
Robust protocols and automation now enable large-scale single-cell RNA and ATAC sequencing experiments and their application on biobank and clinical cohorts. However, technical biases introduced during sample acquisition can hinder solid, reproducible results, and a systematic benchmarking is required before entering large-scale data production. Here, we report the existence and extent of gene expression and chromatin accessibility artifacts introduced during sampling and identify experimental and computational solutions for their prevention.
Asunto(s)
Artefactos , Genómica , Análisis de la Célula Individual , Criopreservación , Epigenoma , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Factores de Tiempo , TranscriptomaRESUMEN
Colorectal cancers (CRCs) are composed of an amalgam of cells with distinct genotypes and phenotypes. Here, we reveal a previously unappreciated heterogeneity in the biosynthetic capacities of CRC cells. We discover that the majority of ribosomal DNA transcription and protein synthesis in CRCs occurs in a limited subset of tumor cells that localize in defined niches. The rest of the tumor cells undergo an irreversible loss of their biosynthetic capacities as a consequence of differentiation. Cancer cells within the biosynthetic domains are characterized by elevated levels of the RNA polymerase I subunit A (POLR1A). Genetic ablation of POLR1A-high cell population imposes an irreversible growth arrest on CRCs. We show that elevated biosynthesis defines stemness in both LGR5+ and LGR5- tumor cells. Therefore, a common architecture in CRCs is a simple cell hierarchy based on the differential capacity to transcribe ribosomal DNA and synthesize proteins.
Asunto(s)
Neoplasias Colorrectales , Células Madre Neoplásicas , Línea Celular Tumoral , Neoplasias Colorrectales/genética , ADN Ribosómico , Humanos , Receptores Acoplados a Proteínas GRESUMEN
BACKGROUND: The aim of this study was to test the feasibility and utility of developing patient-derived orthotopic xenograft (PDOX) models for patients with malignant peripheral nerve sheath tumors (MPNSTs) to aid therapeutic interventions in real time. PATIENT & METHODS: A sporadic relapsed MPNST developed in a 14-year-old boy was engrafted in mice, generating a PDOX model for use in co-clinical trials after informed consent. SNP-array and exome sequencing was performed on the relapsed tumor. Genomics, drug availability, and published literature guided PDOX treatments. RESULTS: A MPNST PDOX model was generated and expanded. Analysis of the patient's relapsed tumor revealed mutations in the MAPK1, EED, and CDK2NA/B genes. First, the PDOX model was treated with the same therapeutic regimen as received by the patient (everolimus and trametinib); after observing partial response, tumors were left to regrow. Regrown tumors were treated based on mutations (palbociclib and JQ1), drug availability, and published literature (nab-paclitaxel; bevacizumab; sorafenib plus doxorubicin; and gemcitabine plus docetaxel). The patient had a lung metastatic relapse and was treated according to PDOX results, first with nab-paclitaxel, second with sorafenib plus doxorubicin after progression, although a complete response was not achieved and multiple metastasectomies were performed. The patient is currently disease free 46 months after first relapse. CONCLUSION: Our results indicate the feasibility of generating MPNST-PDOX and genomic characterization to guide treatment in real time. Although the treatment responses observed in our model did not fully recapitulate the patient's response, this pilot study identify key aspects to improve our co-clinical testing approach in real time.
RESUMEN
Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.
Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Benchmarking , Línea Celular , Bases de Datos Genéticas , Genómica/métodos , Genómica/normas , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/normasRESUMEN
Somatic epigenetic inactivation of the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) is frequent in colorectal cancer (CRC); however, its involvement in CRC predisposition remains unexplored. We assessed the role and relevance of MGMT germline mutations and epimutations in familial and early-onset CRC. Mutation and promoter methylation screenings were performed in 473 familial and/or early-onset mismatch repair-proficient nonpolyposis CRC cases. No constitutional MGMT inactivation by promoter methylation was observed. Of six rare heterozygous germline variants identified, c.346Câ¯>â¯T (p.H116Y) and c.476Gâ¯>â¯A (p.R159Q), detected in three and one families respectively, affected highly conserved residues and showed segregation with cancer in available family members. In vitro, neither p.H116Y nor p.R159Q caused statistically significant reduction of MGMT repair activity. No evidence of somatic second hits was found in the studied tumors. Case-control data showed over-representation of c.346Câ¯>â¯T (p.H116Y) in familial CRC compared to controls, but no overall association of MGMT mutations with CRC predisposition. In conclusion, germline mutations and constitutional epimutations in MGMT are not major players in hereditary CRC. Nevertheless, the over-representation of c.346Câ¯>â¯T (p.H116Y) in our familial CRC cohort warrants further research.