Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(11)2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39495071

RESUMEN

The National Ignition Facility uses a soft x-ray opacity spectrometer for x-ray spectral imaging in high-energy-density experiments. The increased demand for a better spectral resolution prompted the investigation into the Agfa D4 film. Characterization is already under way for the film. A Manson x-ray source using six different anodes was used to expose film to the linear optical density (OD) region. This is a continuation of the previous work, and the updated analysis process is communicated here. The identified uncertainties have been reduced with the updated steps that improve the results of the characterization process. When the Stanford Synchrotron Radiation Lightsource Beamline 16-2 was operational, the film was characterized at that source. Its beam offered a higher fluency with a lower exposure time needed to reach saturation. Results for both sources are compared in this paper.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39101787

RESUMEN

A new time-resolved opacity spectrometer (OpSpecTR) is currently under development for the National Ignition Facility (NIF) opacity campaign. The spectrometer utilizes Icarus version 2 (IV2) hybridized complementary metal-oxide-semiconductor sensors to collect gated data at the time of the opacity transmission signal, unlocking the ability to collect higher-temperature measurements on NIF. Experimental conditions to achieve higher temperatures are feasible; however, backgrounds will dominate the data collected by the current time-integrating opacity spectrometer. The shortest available OpSpecTR integration time of ∼2 ns is predicted to reduce self-emission and other late-time backgrounds by up to 80%. Initially, three Icarus sensors will be used to collect data in the self-emission, backlighter, and absorption regions of the transmission spectrum, with plans to upgrade to five Daedalus sensors in future implementations with integration times of ∼1.3 ns. We present the details of the diagnostic design along with recent characterization results of the IV2 sensors.

3.
Rev Sci Instrum ; 93(11): 113531, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461459

RESUMEN

Neutron time-of-flight (nTOF) detectors have been used on Sandia National Laboratories' Z-Machine for inertial confinement fusion and magnetized liner fusion experiments to infer physics parameters including the apparent fuel-ion temperature, neutron yield, the magnetic-radius product (BR), and the liner rho-r. Single-paddle, dual-paddle, and co-axial scintillation nTOF detectors are used in axial lines-of-sight (LOS) and LOS that are 12° from the midplane. Detector fabrication, characterization, and calibration are discussed.

4.
Rev Sci Instrum ; 89(10): 10K122, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399717

RESUMEN

This work illustrates predominant measureable nonlinearities in photomultiplier tubes (PMTs) and introduces a controllable one called "Superlinearity," signifying both a positive nonlinear response and the ability to extend linear operation by counteracting gain saturation mechanisms - charge depletion, space-charge field limitation, and secondary emission surface effects. Recognizing superlinearity and its effect on the temporal step response leads to a true definition of linearity, free of a small-signal linear assumption. Furthermore, given the prevalent use of glass microchannel-plate (MCP) PMTs in favor of a faster impulse response in spite of a small charge limit, we are motivated to examine their nonlinear amplitude response and deploy tailored gain bias string methods to fully harness the maximum linear gain as is usually done for transmissive metal mesh and reflective metal dynode PMTs. Our characterization methodology applies standard NIST-traceable calibrated laboratory equipment with absolute input-referenced techniques, examining step responses over many orders of magnitude in controlled illumination. By doing so, we quantitatively reveal the superlinearity strength independent of charge depletion, yielding true linear responsivity and effectively doubling the small-signal linear limit; this is very relevant to PMT modeling and charge deconvolution efforts. With further development, the tailoring strategies we introduce could be applied to MCP detectors, extracting all useful capillary charge with a significant improvement in large linear signal quality.

5.
Rev Sci Instrum ; 79(10): 10E922, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044577

RESUMEN

The photoemissive cathode type of x-ray diode (XRD) is popular for measuring time and spectrally resolved output of pulsed power experiments. Vitreous carbon XRDs currently used on the Sandia National Laboratories Z-machine were designed in the early 1980s and use materials and processes no longer available. Additionally cathodes used in the high x-ray flux and dirty vacuum environment of a machine such as Z suffer from response changes requiring recalibration. In searching for a suitable replacement cathode, we discovered very high purity vitreous-carbon planchets are commercially available for use as biological substrates in scanning electron microscope (SEM) work. After simplifying the photocathode mounting to use commercially available components, we constructed a set of 20 XRDs using SEM planchets that were then calibrated at the National Synchrotron Light Source at Brookhaven National Laboratory. We present comparisons of the reproducibility and absolute calibrations between the current vitreous-carbon XRDs and our new design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA