Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Blood ; 143(25): 2612-2626, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38551812

RESUMEN

ABSTRACT: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Mieloma Múltiple , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/inmunología , Mieloma Múltiple/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Calreticulina/metabolismo , Calreticulina/genética , Muerte Celular Inmunogénica/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Autofagia/efectos de los fármacos
2.
Haematologica ; 109(7): 2049-2059, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38328864

RESUMEN

Multiple myeloma (MM) is a hematologic malignancy characterized by clonal proliferation of plasma cells. MM is a heterogeneous disease, featured by various molecular subtypes with different outcomes. With the advent of very efficient therapies including monoclonal antibodies, bispecific T-cell engagers and chimeric antigen receptor T cells (CAR T cells), most MM patients now have a prolonged survival. However, the disease remains incurable, and a subgroup of high-risk patients continue to have early relapse and short survival. Novel and highly sensitive methods have been developed allowing the detection of minimal residual disease (MRD) during or after treatment. Achievement of MRD negativity is a strong and independent prognostic factor in both prospective randomized clinical trials and in the real-world setting. While MRD assessment is now a validated endpoint in clinical trials, its incorporation in clinical practice is not yet established and its potential impact on guiding therapy remains under in-depth evaluation. Here we discuss the different methods available for MRD assessment and the role of MRD evaluation in MM management.


Asunto(s)
Mieloma Múltiple , Neoplasia Residual , Neoplasia Residual/diagnóstico , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/terapia , Mieloma Múltiple/patología , Humanos , Pronóstico , Manejo de la Enfermedad , Biomarcadores de Tumor
3.
Haematologica ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049606

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy considered incurable despite the recent therapeutic advances. Effective targeted therapies are therefore needed. Our previous studies proved that inhibiting CDK7 impairs the cell cycle and metabolic programs by disrupting E2F1 and MYC transcriptional activities, making it an appealing therapeutic target for MM. Given that CDK7 and BRD4 operate in two distinct regulatory axes in MM, we hypothesized that targeting these two complementary pathways simultaneously would lead to a deeper and more durable response. Indeed, combination therapy had superior activity against MM cell growth and viability, and induced apoptosis to a greater extent than single-agent therapy in both cell lines and patient cells. This synergistic activity was also observed in Waldenström's Macroglobulinemia (WM) cells and with other inhibitors of E2F1 activity. Dual inhibition effectively impaired the MYC and E2F transcriptional programs and MM tumor growth and progression in xenograft animal models, providing evidence for combination therapy's potential as a therapeutic strategy in MM and WM.

4.
Blood Adv ; 8(11): 2952-2959, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38513088

RESUMEN

ABSTRACT: Bispecific T-cell engagers (TCEs) are revolutionizing patient care in multiple myeloma (MM). These monoclonal antibodies, that redirect T cells against cancer cells, are now approved for the treatment of triple-class exposed relapsed/refractory MM (RRMM). They are currently tested in earlier lines of the disease, including in first line. Yet, primary resistance occurs in about one-third of patients with RRMM, and most responders eventually develop acquired resistance. Understanding the mechanisms of resistance to bispecific TCE is thus essential to improve immunotherapies in MM. Here, we review recent studies investigating the clinical and molecular determinants of resistance to bispecific TCE. Resistance can arise from tumor-intrinsic or tumor-extrinsic mechanisms. Tumor-intrinsic resistance involves various alterations leading to the loss of the target antigen, such as chromosome deletions, point mutations, or epigenetic silencing. Loss of major histocompatibility complex (MHC) class I, preventing MHC class I: T-cell receptor (TCR) costimulatory signaling, was also reported. Tumor-extrinsic resistance involves abundant exhausted T-cell clones and several factors generating an immunosuppressive microenvironment. Importantly, some resistance mechanisms impair response to 1 TCE while preserving the efficacy of others. We next discuss the clinical implications of these findings. Monitoring the status of target antigens in tumor cells and their immune environment will be key to select the most appropriate TCE for each patient and to design combination and sequencing strategies for immunotherapy in MM.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Linfocitos T , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/farmacología , Resistencia a Antineoplásicos , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Animales
5.
Nat Commun ; 15(1): 4139, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755155

RESUMEN

The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Células Madre Mesenquimatosas , Mieloma Múltiple , Microambiente Tumoral , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Humanos , Microambiente Tumoral/genética , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Transcripción Genética , Células de la Médula Ósea/metabolismo , Movimiento Celular/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Femenino , Masculino
6.
Lancet Haematol ; 11(6): e415-e424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677302

RESUMEN

BACKGROUND: Isatuximab is a CD38 monoclonal antibody approved for relapsed or refractory multiple myeloma. We aimed to evaluate the addition of isatuximab to weekly carfilzomib (K), lenalidomide (R), and dexamethasone (d; Isa-KRd) in transplant-eligible patients with newly diagnosed multiple myeloma and stratified maintenance by cytogenetic risk. METHODS: This single-arm phase 2 trial was done at three cancer centres (two hospitals and a cancer institute) in Boston (MA, USA). Eligible patients were aged at least 18 years and had transplant-eligible newly diagnosed multiple myeloma and an ECOG performance status of 2 or less. Patients received four 28-day cycles of Isa-KRd, including isatuximab 10 mg/kg intravenously weekly for 8 weeks, then every other week for 16 weeks, and every 4 weeks thereafter; carfilzomib 56 mg/m2 intravenously on days 1, 8, and 15 (20 mg/m2 for cycle 1 day 1); lenalidomide 25 mg orally on days 1-21; and dexamethasone 20 mg orally the day of and day after all doses of carfilzomib and isatuximab. Consolidation involved either upfront haematopoietic stem-cell transplantation (HSCT) with two additional cycles or deferred HSCT with four additional cycles of treatment. The primary endpoint was complete response after four cycles of treatment. Analyses were by intention-to-treat. All patients who received one dose of study drug were included in the safety analyses. This study was registered at ClinicalTrials.gov, NCT04430894, and has completed enrolment. FINDINGS: Between July 31, 2020 and Jan 31, 2022, 50 patients were enrolled. Median age was 59 years (range 40-70), 54% (27 of 50 patients) were male, and 44 (88%) were White. 46% (23 of 50) of patients had high-risk cytogenetics. Median follow-up was 26 months (IQR 20·7-30·1). 32% (16 of 50 patients) achieved a complete response after four cycles. The overall response rate (ORR) was 90% (45 patients) and 78% (39 patients) achieved a very good partial response (VGPR) or better. After completion of consolidation, 58% (29 patients) achieved a complete response; the ORR was 90% (45 patients) and 86% (43 patients) achieved a VGPR or better. The most common grade 3 or 4 side-effects (≥two patients) included neutropenia (13 [26%] of 50 patients), elevated alanine aminotransferase (six [12%] patients), fatigue (three [6%] patients), thrombocytopenia (three [6%] patients), acute kidney injury (two [4%] patients), anaemia (two [4%] patients), and febrile neutropenia (two [4%] patients). Grade 1-2 infusion-related reactions were seen in 20% (ten patients), with none grade 3. Grade 1-2 hypertension was seen in 14% (seven patients) with one grade 3 (one [2%] patient). There were two deaths assessed as unrelated to treatment. INTERPRETATION: Although the study did not achieve the prespecified complete response threshold, Isa-KRd induced deep and durable responses in transplant-eligible patients with newly diagnosed multiple myeloma. The treatment proved safe and consistent with similar regimens in this setting. FUNDING: Amgen, Sanofi, and Adaptive.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona , Lenalidomida , Mieloma Múltiple , Oligopéptidos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/terapia , Dexametasona/uso terapéutico , Dexametasona/administración & dosificación , Dexametasona/efectos adversos , Masculino , Lenalidomida/uso terapéutico , Lenalidomida/administración & dosificación , Lenalidomida/efectos adversos , Femenino , Persona de Mediana Edad , Oligopéptidos/uso terapéutico , Oligopéptidos/administración & dosificación , Oligopéptidos/efectos adversos , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Adulto
7.
Nat Commun ; 15(1): 6550, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095365

RESUMEN

The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.


Asunto(s)
Sistema de Conducción Cardíaco , Proteínas de Homeodominio , Miocitos Cardíacos , Proteínas de Dominio T Box , Animales , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica , Animales Recién Nacidos , Análisis de la Célula Individual , Transcriptoma , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiología , Nodo Atrioventricular/metabolismo , Nodo Sinoatrial/metabolismo , Fascículo Atrioventricular/metabolismo
8.
JCO Clin Cancer Inform ; 8: e2300197, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038255

RESUMEN

PURPOSE: Stage in multiple myeloma (MM) is an essential measure of disease risk, but its measurement in large databases is often lacking. We aimed to develop and validate a natural language processing (NLP) algorithm to extract oncologists' documentation of stage in the national Veterans Affairs (VA) Healthcare System. METHODS: Using nationwide electronic health record (EHR) and cancer registry data from the VA Corporate Data Warehouse, we developed and validated a rule-based NLP algorithm to extract oncologist-determined MM stage. To that end, a clinician annotated MM stage within over 5,000 short snippets of clinical notes, and annotated MM stage at MM treatment initiation for 200 patients. These were allocated into snippet- and patient-level development and validation sets. We developed MM stage extraction and roll-up algorithms within the development sets. After the algorithms were finalized, we validated them using standard measures in held-out validation sets. RESULTS: We developed algorithms for three different MM staging systems that have been in widespread use (Revised International Staging System [R-ISS], International Staging System [ISS], and Durie-Salmon [DS]) and for stage reported without a clearly defined system. Precision and recall were uniformly high for MM stage at the snippet level, ranging from 0.92 to 0.99 for the different MM staging systems. Performance in identifying for MM stage at treatment initiation at the patient level was also excellent, with precision of 0.92, 0.96, 0.90, and 0.86 and recall of 0.99, 0.98, 0.94, and 0.92 for R-ISS, ISS, DS, and unclear stage, respectively. CONCLUSION: Our MM stage extraction algorithm uses rule-based NLP and data aggregation to accurately measure MM stage documented in oncology notes and pathology reports in VA's national EHR system. It may be adapted to other systems where MM stage is recorded in clinical notes.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Mieloma Múltiple , Procesamiento de Lenguaje Natural , Estadificación de Neoplasias , United States Department of Veterans Affairs , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/terapia , Estados Unidos , Masculino , Femenino , Veteranos
9.
Nat Commun ; 15(1): 1367, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355622

RESUMEN

Anti-CD38 monoclonal antibodies like Daratumumab (Dara) are effective in multiple myeloma (MM); however, drug resistance ultimately occurs and the mechanisms behind this are poorly understood. Here, we identify, via two in vitro genome-wide CRISPR screens probing Daratumumab resistance, KDM6A as an important regulator of sensitivity to Daratumumab-mediated antibody-dependent cellular cytotoxicity (ADCC). Loss of KDM6A leads to increased levels of H3K27me3 on the promoter of CD38, resulting in a marked downregulation in CD38 expression, which may cause resistance to Daratumumab-mediated ADCC. Re-introducing CD38 does not reverse Daratumumab-mediated ADCC fully, which suggests that additional KDM6A targets, including CD48 which is also downregulated upon KDM6A loss, contribute to Daratumumab-mediated ADCC. Inhibition of H3K27me3 with an EZH2 inhibitor resulted in CD38 and CD48 upregulation and restored sensitivity to Daratumumab. These findings suggest KDM6A loss as a mechanism of Daratumumab resistance and lay down the proof of principle for the therapeutic application of EZH2 inhibitors, one of which is already FDA-approved, in improving MM responsiveness to Daratumumab.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Epigénesis Genética , Histonas/metabolismo , ADP-Ribosil Ciclasa 1 , Células Asesinas Naturales
10.
Blood Adv ; 8(15): 4025-4034, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38861273

RESUMEN

ABSTACT: To our knowledge, venetoclax is the first example of personalized medicine for multiple myeloma (MM), with meaningful clinical activity as a monotherapy and in combination in patients with myeloma harboring the t(11:14) translocation. However, despite the high response rates and prolonged progression-free survival, a significant proportion of patients eventually relapse. Here, we aim to study adaptive molecular responses after the acquisition of venetoclax resistance in sensitive t(11:14) MM cell models. We therefore generated single-cell venetoclax-resistant t(11:14) MM cell lines and investigated the mechanisms contributing to resistance as well as the cells' sensitivity to other treatments. Our data suggest that acquired resistance to venetoclax is characterized by reduced mitochondrial priming and changes in B-cell lymphoma-2 (BCL-2) family proteins' expression in MM cells, conferring broad resistance to standard-of-care antimyeloma drugs. However, our results show that the resistant cells are still sensitive to immunotherapeutic treatments, highlighting the need to consider appropriate sequencing of these treatments after venetoclax-based regimens.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Resistencia a Antineoplásicos , Inmunoterapia , Mieloma Múltiple , Sulfonamidas , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/terapia , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Inmunoterapia/métodos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
11.
JCO Precis Oncol ; 8: e2300349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38237098

RESUMEN

PURPOSE: Cancer patients with advanced-stage disease have poor prognosis, typically having limited options for efficacious treatment, and genomics-based therapy guidance continues to benefit only a fraction of patients. Next-generation ex vivo approaches, such as cell mass-based response testing (MRT), offer an alternative precision medicine approach for a broader population of patients with cancer, but validation of clinical feasibility and potential impact remain necessary. MATERIALS AND METHODS: We evaluated the clinical feasibility and accuracy of using live-cell MRT to predict patient drug sensitivity. Using a unified measurement workflow with a 48-hour result turnaround time, samples were subjected to MRT after treatment with a panel of drugs in vitro. After completion of therapeutic course, clinical response data were correlated with MRT-based predictions of outcome. Specimens were collected from 104 patients with solid (n = 69) and hematologic (n = 35) malignancies, using tissue formats including needle biopsies, malignant fluids, bone marrow aspirates, and blood samples. Of the 81 (78%) specimens qualified for MRT, 41 (51%) patients receiving physician-selected therapies had treatments matched to MRT. RESULTS: MRT demonstrated high concordance with clinical responses with an odds ratio (OR) of 14.80 (P = .0003 [95% CI, 2.83 to 102.9]). This performance held for both solid and hematologic malignances with ORs of 20.67 (P = .0128 [95% CI, 1.45 to 1,375.57]) and 8.20 (P = .045 [95% CI, 0.77 to 133.56]), respectively. Overall, these results had a predictive accuracy of 80% (P = .0026 [95% CI, 65 to 91]). CONCLUSION: MRT showed highly significant correlation with clinical response to therapy. Routine clinical use is technically feasible and broadly applicable to a wide range of samples and malignancy types, supporting the need for future validation studies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico
12.
Blood Cancer Discov ; 5(3): 146-152, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441243

RESUMEN

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.


Asunto(s)
Ensayos Clínicos como Asunto , Mieloma Múltiple , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Humanos , Ensayos Clínicos como Asunto/métodos , Proyectos de Investigación , Calidad de Vida
13.
Blood Cancer Discov ; 5(3): 164-179, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150184

RESUMEN

Myeloid neoplasms arise from preexisting clonal hematopoiesis (CH); however, the role of CH in the pathogenesis of acute lymphoblastic leukemia (ALL) is unknown. We found that 18% of adult ALL cases harbored TP53, and 16% had myeloid CH-associated gene mutations. ALL with myeloid mutations (MyM) had distinct genetic and clinical characteristics, associated with inferior survival. By using single-cell proteogenomic analysis, we demonstrated that myeloid mutations were present years before the diagnosis of ALL, and a subset of these clones expanded over time to manifest as dominant clones in ALL. Single-cell RNA sequencing revealed upregulation of genes associated with cell survival and resistance to apoptosis in B-ALL with MyM, which responds better to newer immunotherapeutic approaches. These findings define ALL with MyM as a high-risk disease that can arise from antecedent CH and offer new mechanistic insights to develop better therapeutic and preventative strategies. SIGNIFICANCE: CH is a precursor lesion for lymphoblastic leukemogenesis. ALL with MyM has distinct genetic and clinical characteristics, associated with adverse survival outcomes after chemotherapy. CH can precede ALL years before diagnosis, and ALL with MyM is enriched with activated T cells that respond to immunotherapies such as blinatumomab. See related commentary by Iacobucci, p. 142.


Asunto(s)
Hematopoyesis Clonal , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Hematopoyesis Clonal/genética , Adulto , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto Joven , Adolescente
14.
Front Oncol ; 13: 1271807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111533

RESUMEN

Background: Multiple Myeloma (MM) patients exhibit dysregulated immune system, which is further weakened by chemotherapeutic agents. While cereblon-modulating agents, such as pomalidomide and lenalidomide, have been found to improve the immune profile, the efficacy of their impact in combination with other treatments is yet unknown. Methods: We conducted an immune-profiling of a longitudinal cohort of 366 peripheral blood samples from the CC4047-MM-007 (OPTIMISMM, NCT01734928) study. This study followed relapsed/refractory Multiple Myeloma (RRMM) patients who were treated with Velcade + dexamethasone (Vd), or Vd with pomalidomide (PVd). 366 blood samples from 186 patients were evaluated using multi-color flow cytometry at 3 timepoints: screening, day 8 of cycle 1, and cycle 3. Results: Among NK and NKT cell populations, adding pomalidomide showed no inhibition in the frequency of NK cells. When expression of double positivity for activation markers like, p46/NKG2D, on NK cells was higher than the median, PVd treated patients showed significantly better (p=0.05) progression-free survival (PFS) (additional 15 months) than patients with lower than the median expression of p46/NKG2D on NK cells. PVd treated patients who expressed CD158a/b below the median at cycle 1 demonstrated a significantly better PFS (more than 18months). Among B cell subtypes, PVd treatment significantly increased the abundance of B1b cells (p<0.05) and decreased Bregs (p<0.05) at day 8 of both cycle 1 and cycle 3 when compared to screening samples. Of all the B cell-markers evaluated among paired samples, a higher expression of MZB cells at day 8 of cycle 1 has resulted in enhanced PFS in PVd treated patients. Within T cells, pomalidomide treatment did not decrease the frequency of CD8 T cells when compared with screening samples. The higher the surface expression of OX-40 on CD8 T cells and the lower the expression of PD-1 and CD25 on CD4 T cells by PVd treatment resulted in improved PFS. Conclusion: The prognostic significance for the number of immune markers is only seen in the PVd arm and none of these immune markers exhibit prognostic values in the Vd arm. This study demonstrates the importance of the immunomodulatory effects and the therapeutic benefit of adding pomalidomide to Vd treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA