Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(4): e1010941, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37115795

RESUMEN

The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis, with the highest rate of disease in patients with AIDS or immunosuppression. This microbe enters the human body via inhalation of infectious particles. C. neoformans capsular polysaccharide, in which the major component is glucuronoxylomannan (GXM), extensively accumulates in tissues and compromises host immune responses. C. neoformans travels from the lungs to the bloodstream and crosses to the brain via transcytosis, paracytosis, or inside of phagocytes using a "Trojan horse" mechanism. The fungus causes life-threatening meningoencephalitis with high mortality rates. Hence, we investigated the impact of intranasal exogenous GXM administration on C. neoformans infection in C57BL/6 mice. GXM enhances cryptococcal pulmonary infection and facilitates fungal systemic dissemination and brain invasion. Pre-challenge of GXM results in detection of the polysaccharide in lungs, serum, and surprisingly brain, the latter likely reached through the nasal cavity. GXM significantly alters endothelial cell tight junction protein expression in vivo, suggesting significant implications for the C. neoformans mechanisms of brain invasion. Using a microtiter transwell system, we showed that GXM disrupts the trans-endothelial electrical resistance, weakening human brain endothelial cell monolayers co-cultured with pericytes, supportive cells of blood vessels/capillaries found in the blood-brain barrier (BBB) to promote C. neoformans BBB penetration. Our findings should be considered in the development of therapeutics to combat the devastating complications of cryptococcosis that results in an estimated ~200,000 deaths worldwide each year.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Animales , Ratones , Humanos , Cryptococcus neoformans/metabolismo , Roedores , Ratones Endogámicos C57BL , Criptococosis/microbiología , Polisacáridos/metabolismo , Pulmón/metabolismo
2.
J Infect Dis ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622836

RESUMEN

Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.

3.
Antimicrob Agents Chemother ; 67(10): e0045923, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37750714

RESUMEN

Cryptococcus neoformans (Cn) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Meningoencefalitis , Humanos , Ratones , Animales , Meningitis Criptocócica/tratamiento farmacológico , Meningitis Criptocócica/microbiología , Antifúngicos/uso terapéutico , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Anfotericina B/uso terapéutico , Flucitosina/uso terapéutico , Meningoencefalitis/tratamiento farmacológico
4.
Infect Immun ; 90(4): e0009122, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35357221

RESUMEN

Methamphetamine (METH) is a major public health and safety problem in the United States. Chronic METH abuse is associated with a 2-fold-higher risk of HIV infection and, possibly, additional infections, particularly those that enter through the respiratory tract or skin. Cryptococcus neoformans is an encapsulated opportunistic yeast-like fungus that is a relatively frequent cause of meningoencephalitis in immunocompromised patients, especially in individuals with AIDS. C. neoformans melanizes during mammalian infection in a process that presumably uses host-supplied compounds such as catecholamines. l-3,4-Dihydroxyphenylalanine (l-Dopa) is a natural catecholamine that is frequently used to induce melanization in C. neoformans. l-Dopa-melanized cryptococci manifest resistance to radiation, phagocytosis, detergents, and heavy metals. Using a systemic mouse model of infection and in vitro assays to critically assess the impact of METH on C. neoformans melanization and pathogenesis, we demonstrated that METH-treated mice infected with melanized yeast cells showed increased fungal burdens in the blood and brain, exacerbating mortality. Interestingly, analyses of cultures of METH-exposed cryptococci supplemented with l-Dopa revealed that METH accelerates fungal melanization, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Infecciones por VIH , Metanfetamina , Sepsis , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Criptococosis/microbiología , Modelos Animales de Enfermedad , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Mamíferos , Melaninas , Metanfetamina/farmacología , Ratones , Saccharomyces cerevisiae
6.
Future Microbiol ; 18: 1095-1117, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750748

RESUMEN

Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.


Asunto(s)
Infecciones Fúngicas Invasoras , Micosis , Humanos , Antifúngicos/uso terapéutico , Micosis/tratamiento farmacológico , Micosis/microbiología , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Infecciones Fúngicas Invasoras/microbiología , Hongos
7.
mBio ; 14(2): e0264022, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36786559

RESUMEN

Cryptococcus neoformans (Cn) is an opportunistic, encapsulated, yeast-like fungus that causes severe meningoencephalitis, especially in countries with high HIV prevalence. In addition to its well-known polysaccharide capsule, Cn has other virulence factors such as phospholipases, a heterogeneous group of enzymes that hydrolyze ester linkages in glycerophospholipids. Phospholipase B (PLB1) has been demonstrated to play a key role in Cn pathogenicity. In this study, we used a PLB1 mutant (plb1) and its reconstituted strain (Rec1) to assess the importance of this enzyme on Cn brain infection in vivo and in vitro. Mice infected with the plb1 strain survive significantly longer, have lower peripheral and central nervous system (CNS) fungal loads, and have fewer and smaller cryptococcomas or biofilm-like brain lesions compared to H99- and Rec1-infected animals. PLB1 causes extensive brain tissue damage and changes microglia morphology during cryptococcal disease, observations which can have important implications in patients with altered mental status or dementia as these manifestations are related to poorer survival outcomes. plb1 cryptococci are significantly more phagocytosed and killed by NR-9460 microglia-like cells. plb1 cells have altered capsular polysaccharide biophysical properties which impair their ability to stimulate glial cell responses or morphological changes. Here, we provide significant evidence demonstrating that Cn PLB1 is an important virulence factor for fungal colonization of and survival in the CNS as well as in the progression of cryptococcal meningoencephalitis. These findings may potentially help fill in a gap of knowledge in our understanding of cerebral cryptococcosis and provide novel research avenues in Cn pathogenesis. IMPORTANCE Cryptococcal meningoencephalitis (CME) is a serious disease caused by infection by the neurotropic fungal pathogen Cryptococcus neoformans. Due to the increasing number of cases in HIV-infected individuals, as well as the limited therapies available, investigation into potential targets for new therapeutics has become critical. Phospholipase B is an enzyme synthesized by Cn that confers virulence to the fungus through capsular enlargement, immunomodulation, and intracellular replication. In this study, we examined the properties of PLB1 by comparing infection of a Cn PLB1 mutant strain with both the wild-type and a PLB1-reconstituted strain. We show that PLB1 augments the survival and proliferation of the fungus in the CNS and strengthens virulence by modulating the immune response and enhancing specific biophysical properties of the fungus. PLB1 expression causes brain tissue damage and impacts glial cell functions, which may be responsible for the dementia observed in patients which may persist even after resolving from CME. The implications of PLB1 inhibition reveal its involvement in Cn infection and suggest that it may be a possible molecular target in the development of antifungal therapies. The results of this study support additional investigation into the mechanism of PLB1 to further understand the intricacies of cerebral Cn infection.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Demencia , Infecciones por VIH , Meningoencefalitis , Animales , Ratones , Cryptococcus neoformans/metabolismo , Lisofosfolipasa/metabolismo , Criptococosis/microbiología , Sistema Nervioso Central/patología , Meningoencefalitis/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Infecciones por VIH/complicaciones
8.
bioRxiv ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090670

RESUMEN

Cryptococcus neoformans ( Cn ) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.

9.
PLoS Negl Trop Dis ; 17(1): e0011068, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656900

RESUMEN

Infection of the Central Nervous System (CNS) by the encapsulated fungus Cryptococcus neoformans can lead to high mortality meningitis, most commonly in immunocompromised patients. While the mechanisms by which the fungus crosses the blood-brain barrier to initiate infection in the CNS are well recognized, there are still substantial unanswered questions about the disease progression once the fungus is established in the brain. C. neoformans is characterized by a glucuronoxylomannan (GXM)-rich polysaccharide capsule which has been implicated in immune evasion, but its role during the host CNS infection needs further elucidation. Therefore, the present study aims to examine these key questions about the mechanisms underlying cryptococcal meningitis progression and the impact of fungal GXM release by using an intracerebral rodent infection model via stereotaxic surgery. After developing brain infection, we analyzed distinct brain regions and found that while fungal load and brain weight were comparable one-week post-infection, there were region-specific histopathological (with and without brain parenchyma involvement) and disease manifestations. Moreover, we also observed a region-specific correlation between GXM accumulation and glial cell recruitment. Furthermore, mortality was associated with the presence of subarachnoid hemorrhaging and GXM deposition in the meningeal blood vessels and meninges in all regions infected. Our results show that using the present infection model can facilitate clinical and neuropathological observations during the progression of neurocryptococcosis. Importantly, this mouse model can be used to further investigate disease progression as it develops in humans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningitis Criptocócica , Humanos , Animales , Ratones , Criptococosis/microbiología , Sistema Nervioso Central , Meningitis Criptocócica/microbiología , Polisacáridos , Modelos Animales de Enfermedad , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA