Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490538

RESUMEN

Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In addition, we hypothesized that their mRNA abundance varies with the body condition of dairy cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA abundance of BA -related enzymes, transporters, and receptors in scAT during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal BCS (NBCS; n = 19) group based on their body condition score (BCS) and back fat thickness (BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off at 7 wk ante partum. During the dry period and subsequent lactation, both groups were fed the same diets regarding their demands. Using a targeted metabolomics approach via LC-ESI-MS /MS, BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 BA (cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid (TCDCA), deoxycholic acid (DCA), lithocholic acid (LCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA), ß-muricholic acid (MCA(b)), tauromuricholic acid (sum of α and ß) (TMCA (a+b)), glycoursodeoxycholic acid (GUDCA)) were observed, whereas in scAT 7 BA (CA, GCA, TCA, GCDCA, TCDCA, GDCA, TDCA) were detected. In serum and scAT samples, the primary BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and MCA(b) with the onset of lactation might be related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, LCA, and GDCA were lower in HBCS cows compared with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the findings of the present study suggest a potential role of BA in lipid metabolism depending on the body condition of periparturient dairy cows.

2.
Neuroendocrinology ; 112(3): 235-251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33853082

RESUMEN

BACKGROUND: Glucocorticoid (GC) receptor (GR) signaling in the hypothalamus (Hyp) and in the superordinate limbic structures, such as the hippocampus (Hip), conveys feedback regulation of the neuroendocrine stress response and acts upon other neurobiological functions that ultimately influence mental health. These responses are strongly influenced by sex, but the molecular causes are still largely unexplored. METHODS: To investigate GR targets and their GC sensitivity in the Hyp and Hip, we treated juvenile male and female piglets with 10 (D10) or 60 (D60) µg/kg dexamethasone (DEX), a selective GR agonist, and analyzed transcriptome responses compared to a saline control group using RNA sequencing. RESULTS: Both doses influenced similar biological functions, including cellular response to lipid and immune cell-related functions, but the transcriptional response to D10 was considerably weaker, particularly in the Hip. Weighted Gene Co-expression Network Analysis revealed a network of genes coordinately regulated by DEX in both structures, among which the alpha-arrestin ARRDC2 takes a central position. Distinct functional groups of genes were differentially regulated by DEX between sexes depending on the dose; at D10, these included particularly mitochondrial genes, whereas at D60 interferon signaling and lipid homeostasis genes were enriched. The general and sex-specific transcriptional responses to DEX highlight microglia as the prominent target. Several key marker genes of disease-associated microglia were regulated by DEX depending on sex, such as TREM2 and LPL. CONCLUSION: The discovered expression signatures suggest that DEX induced a dysfunctional state of microglia in males, while in females microglia were primed, which could entail predisposition for different mental disorders.


Asunto(s)
Dexametasona , Transcriptoma , Animales , Dexametasona/farmacología , Femenino , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Hipocampo/metabolismo , Humanos , Masculino , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Porcinos
3.
BMC Genomics ; 22(1): 485, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187361

RESUMEN

BACKGROUND: Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis were assessed (n = 80). RESULTS: Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics. CONCLUSIONS: The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements, which have so far been neglected in the supply recommendations. There is a demand for trial data showing the mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in laying hens.


Asunto(s)
Calcio de la Dieta , Pollos , Animales , Femenino , Alimentación Animal/análisis , Calcio , Pollos/genética , Dieta , Yeyuno , Oviposición , Fósforo
4.
J Anim Physiol Anim Nutr (Berl) ; 105 Suppl 2: 52-62, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32180287

RESUMEN

Sufficient supply of pigs with calcium (Ca) and phosphorus (P) is essential for animal health and welfare during the growth period. However, the P content in animal manure is considered as a cause of massive environmental problems in soil and aquatic ecosystems. To complement previous findings, the objective of this study is the investigation of effects of a reduced and increased Ca and P supplementation on bone mineralization and bone structure compared with the current dietary recommendation. Another aim is to find possible serum markers that would allow the assessment of adequacy of P supply for bone health during growth. The result validated that the recommended Ca and P supply is sufficient, without the addition of microbial phytases. However, addition of P has no further beneficial effects on bone stability, while P supplementation below the recommended level affects bone development and growth performance. Reduced P levels have consequences for cancellous bone density and trabecular architecture. Further fine-tuning of the P supply in conjunction with an appropriate Ca supply will contribute to a reduction in P waste and associated environmental impact while maintaining animal health and welfare.


Asunto(s)
Fósforo Dietético , Alimentación Animal/análisis , Animales , Biomarcadores , Densidad Ósea , Calcio , Calcio de la Dieta , Ecosistema , Fósforo , Porcinos
5.
BMC Genomics ; 21(1): 626, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917128

RESUMEN

BACKGROUND: The environmental impact of pig farming need to be reduced, with phosphorus (P) being of particular interest. Specified dietary regimens and management systems contribute to meet environmental concerns and reduce economic constrains. However, pregnant and lactating sows represent vulnerable individuals, whose reproductive potential and metabolic health status relies on adequate supply of macro- and micronutrients. The aim of this study was to investigate, whether sows fed with a dietary P content that is below or above current recommendations are capable to maintain mineral homeostasis during the reproduction cycle and which endogenous mechanisms are retrieved therefore in kidney and jejunum. Nulliparous gilts were fed iso-energetic diets with recommended (M), reduced (L), or high (H) amounts of mineral P supplements throughout gestation and lactation periods. Blood metabolites and hormones referring to the P homeostasis were retrieved prior to term (110 days of gestation) and at weaning (28 days of lactation). Transcriptional responses in kidney cortex and jejunal mucosa were analyzed using RNA sequencing. RESULTS: The variable dietary P content neither led to an aberration on fertility traits such as total weaned piglets nor to an effect on the weight pattern throughout gestation and lactation. Serum parameters revealed a maintained P homeostasis as reflected by unaltered inorganic P and calcium levels in L and H fed groups. The serum calcitriol levels were increased in lactating L sows. The endocrine responses to the dietary challenge were reflected at the transcriptional level. L diets led to an increase in CYP27B1 expression in the kidney compared to the H group and to an altered gene expression associated with lipid metabolism in the kidney and immune response in the jejunum. CONCLUSIONS: Our results suggest that current P requirements for gestating and lactating sows are sufficient and over supplementation of mineral P is not required. Shifts in renal and jejunal expression patterns between L and H groups indicate an affected intermediate metabolism, which long-term relevance needs to be further clarified.


Asunto(s)
Yeyuno/metabolismo , Riñón/metabolismo , Fósforo Dietético/metabolismo , Preñez/metabolismo , Porcinos/metabolismo , Transcriptoma , Adaptación Fisiológica , Alimentación Animal/normas , Animales , Femenino , Lactancia/metabolismo , Fósforo Dietético/normas , Embarazo , Porcinos/genética , Porcinos/fisiología
6.
Brain Behav Immun ; 90: 174-183, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32795657

RESUMEN

Despite the crucial role of glucocorticoid receptor (GR) in proper immune responses, the effect of GR hypersensitivity on inflammation is rarely reported. To fill this knowledge gap, we exploited the natural gain-of-function substitution in the porcine glucocorticoid receptor (GRAla610Val) and challenged pigs carrying normal or hypersensitive GR using 50 µg/kg lipopolysaccharide (LPS) following pretreatment with either saline or single bolus of 60 µg/kg dexamethasone (DEX). The GRAla610Val substitution reduced baseline cortisol, adrenocorticotropic hormone (ACTH), and triglyceride concentration and granulocyte proportion whereas baseline platelet counts were elevated. Val-carriers, i.e. AlaVal as well as ValVal pigs, showed less LPS-induced cortisol rise but the cortisol fold change was similar in all genotypes. Differently, ACTH response to LPS was most significant in GRAla610Val heterozygotes (AlaVal). LPS-induced disorders, including sickness behaviors, anorexia, thrombocytopenia, cytokine production, and metabolic alterations were more intense in Val-carriers. On the other hand, Val-carriers were more sensitive to DEX effect than wild types (AlaAla) during endotoxemia, but not under unchallenged conditions. This is the first report revealing aggravated responses to endotoxemia by GR gain-of-function. Together, these results imply that GR hypersensitivity is difficult to diagnose but may represent a risk factor for endotoxemia and sepsis.


Asunto(s)
Endotoxemia , Receptores de Glucocorticoides , Hormona Adrenocorticotrópica , Animales , Dexametasona , Endotoxemia/inducido químicamente , Hidrocortisona , Lipopolisacáridos , Receptores de Glucocorticoides/genética , Porcinos
7.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316159

RESUMEN

Phosphorus (P) is an essential component for all living beings. Low P diets prompt phenotypic and molecular adaptations to maintain P homeostasis and increase P utilization (PU). Knowledge of the molecular mechanisms of PU is needed to enable targeted approaches to improve PU efficiency and thus lower P excretion in animal husbandry. In a previous population study, Japanese quail were subjected to a low P diet lacking mineral P and exogenous phytase. Individual PU was determined based on total P intake and excretion. A subset of 20 extreme siblings discordant for PU was selected to retrieve gene expression patterns of ileum (n = 10 per PU group). Sequencing reads have been successfully mapped to the current Coturnix japonica reference genome with an average mapping rate of 86%. In total, 640 genes were found to be differentially abundant between the low and high PU groups (false discovery rate ≤ 0.05). Transcriptional patterns suggest a link between improved PU and mitochondrial energy metabolism, accelerated cell proliferation of enterocytes, and gut integrity. In assessing indicators of the efficient use of macro- and micronutrients, further research on turnover and proliferation rates of intestinal cells could provide an approach to improve P efficiency in poultry species.


Asunto(s)
Fósforo/metabolismo , Codorniz/genética , Transcriptoma , 6-Fitasa/metabolismo , Animales , Mapeo Cromosómico , Coturnix/genética , Dieta/veterinaria , Metabolismo Energético , Ontología de Genes , Íleon/metabolismo , Japón , Mitocondrias/metabolismo , Análisis de Componente Principal , Codorniz/metabolismo , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo
8.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316683

RESUMEN

Phosphorus is an essential mineral for all living organisms and a limited resource worldwide. Variation and heritability of phosphorus utilization (PU) traits were observed, indicating the general possibility of improvement. Molecular mechanisms of PU, including host and microbial effects, are still poorly understood. The most promising molecules that interact between the microbiome and host are microRNAs. Japanese quail representing extremes for PU were selected from an F2 population for miRNA profiling of the ileal tissue and subsequent association with mRNA and microbial data of the same animals. Sixty-nine differentially expressed miRNAs were found, including 21 novel and 48 known miRNAs. Combining miRNAs and mRNAs based on correlated expression and target prediction revealed enrichment of transcripts in functional pathways involved in phosphate or bone metabolism such as RAN, estrogen receptor and Wnt signaling, and immune pathways. Out of 55 genera of microbiota, seven were found to be differentially abundant between PU groups. The study reveals molecular interactions occurring in the gut of quail which represent extremes for PU including miRNA-16-5p, miR-142b-5p, miR-148a-3p, CTDSP1, SMAD3, IGSF10, Bacteroides, and Alistipes as key indicators due to their trait-dependent differential expression and occurrence as hub-members of the network of molecular drivers of PU.


Asunto(s)
Bacterias/clasificación , Coturnix/genética , Perfilación de la Expresión Génica/veterinaria , MicroARNs/genética , Fósforo/metabolismo , Animales , Proteínas Aviares/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Coturnix/microbiología , Femenino , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Masculino , Filogenia , ARN Mensajero/genética , Análisis de Secuencia de ARN
9.
BMC Genomics ; 20(1): 492, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31195974

RESUMEN

BACKGROUND: Epigenetic variation may result from selection for complex traits related to metabolic processes or appear in the course of adaptation to mediate responses to exogenous stressors. Moreover epigenetic marks, in particular the DNA methylation state, of specific loci are driven by genetic variation. In this sense, polymorphism with major gene effects on metabolic and cell signaling processes, like the variation of the ryanodine receptors in skeletal muscle, may affect DNA methylation. METHODS: DNA-Methylation profiles were generated applying Reduced Representation Bisulfite Sequencing (RRBS) on 17 Musculus longissimus dorsi samples. We examined DNA methylation in skeletal muscle of pig breeds differing in metabolic type, Duroc and Pietrain. We also included F2 crosses of these breeds to get a first clue to DNA methylation sites that may contribute to breed differences. Moreover, we compared DNA methylation in muscle tissue of Pietrain pigs differing in genotypes at the gene encoding the Ca2+ release channel (RYR1) that largely affects muscle physiology. RESULTS: More than 2000 differently methylated sites were found between breeds including changes in methylation profiles of METRNL, IDH3B, COMMD6, and SLC22A18, genes involved in lipid metabolism. Depending on RYR1 genotype there were 1060 differently methylated sites including some functionally related genes, such as CABP2 and EHD, which play a role in buffering free cytosolic Ca2+ or interact with the Na+/Ca2+ exchanger. CONCLUSIONS: The change in the level of methylation between the breeds is probably the result of the long-term selection process for quantitative traits involving an infinite number of genes, or it may be the result of a major gene mutation that plays an important role in muscle metabolism and triggers extensive compensatory processes.


Asunto(s)
Metilación de ADN , Epigenoma/genética , Músculo Esquelético/metabolismo , Polimorfismo de Nucleótido Simple , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Islas de CpG/genética , Músculo Esquelético/fisiología , Porcinos
10.
RNA Biol ; 16(12): 1764-1774, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31432767

RESUMEN

With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica , Genoma , ARN Pequeño no Traducido/genética , Estrés Fisiológico/genética , Glándulas Suprarrenales/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Condicionamiento Operante , Miedo/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Hipocampo/metabolismo , Hipotálamo/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Memoria/fisiología , Anotación de Secuencia Molecular , Especificidad de Órganos , División del ARN , ARN Pequeño no Traducido/clasificación , ARN Pequeño no Traducido/metabolismo , Porcinos
11.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717287

RESUMEN

Sodium/phosphate co-transporters are considered to be important mediators of phosphorus (P) homeostasis. The expression of specific sodium/phosphate co-transporters is routinely used as an immediate response to dietary interventions in different species. However, a general understanding of their tissue-specificity is required to elucidate their particular contribution to P homeostasis. In this study, the tissue-wide gene expression status of all currently annotated sodium/phosphate co-transporters were investigated in two pig trials focusing on a standard commercial diet (trial 1) or divergent P-containing diets (trial 2). A wide range of tissues including the gastrointestinal tract (stomach, duodenum, jejunum, ileum, caecum, and colon), kidney, liver, bone, muscle, lung, and aorta were analyzed. Both trials showed consistent patterns in the overall tissue-specific expression of P transporters. While SLC34A2 was considered as the most important intestinal P transporter in other species including humans, SLC34A3 appeared to be the most prominent intestinal P transporter in pigs. In addition, the P transporters of the SLC17 family showed basal expression in the pig intestine and might have a contribution to P homeostasis. The expression patterns observed in the distal colon provide evidence that the large intestine may also be relevant for intestinal P absorption. A low dietary P supply induced higher expressions of SLC20A1, SLC20A2, SLC34A1, and SLC34A3 in the kidney cortex. The results suggest that the expression of genes encoding transcellular P transporters is tissue-specific and responsive to dietary P supply, while underlying regulatory mechanisms require further analyses.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especificidad de Órganos/genética , Proteínas Cotransportadoras de Sodio-Fosfato/genética , Porcinos/genética , Animales , Dosificación de Gen , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/metabolismo
12.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897706

RESUMEN

Although dexamethasone (DEX) is a widely used immunoregulatory agent, knowledge about its pharmacological properties in farm animals, especially pigs, is insufficient. Previous studies suggest that compared to other species, pigs are less sensitive to the immunosuppression conferred by DEX and more sensitive to the threat of bacterial endotoxins. However, there is a paucity of studies examining DEX immunomodulation in endotoxemia in this species. In this study, a porcine endotoxemia model was established by lipopolysaccharide (LPS) and the effect of DEX-pretreatment on the magnitude and kinetics of neuroendocrine, metabolic, hematologic, inflammatory, and behavioural responses were examined. DEX decreased cortisol, adrenocorticotropic hormone (ACTH), red blood cell, hemoglobin, hematocrit, and lymphocyte whereas glucose concentration was increased under both normal and endotoxemic conditions. By contrast, DEX decreased triglyceride, lactate, and IL-6 concentrations and increased platelet count only under an endotoxemic condition. DEX also reduced the frequency of sickness behaviour following LPS challenge. PCA showed that glucose and triglyceride metabolism together with red blood cell count mainly contributed to the separation of clusters during DEX treatment. Our study demonstrates that DEX protects pigs from inflammation and morbidity in endotoxemia, in spite of their less sensitivity to DEX. Moreover, its considerable role in the regulation of the metabolic and hematologic responses in endotoxemic pigs is revealed for the first time.


Asunto(s)
Dexametasona/uso terapéutico , Endotoxemia/tratamiento farmacológico , Hormona Adrenocorticotrópica/sangre , Animales , Citocinas/sangre , Endotoxemia/sangre , Femenino , Glucosa/metabolismo , Hidrocortisona/sangre , Inflamación/sangre , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/sangre , Masculino , Porcinos , Triglicéridos/sangre
13.
Physiol Genomics ; 50(9): 726-734, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906208

RESUMEN

Feed efficiency (FE) is a measure of the rate between feed intake and body weight gain and is subject to constant progress in pigs, based on extensive performance tests and analyses of physiological parameters. However, endocrine regulatory circuits that comprise the sensation and perception of intrinsic requirements and appropriate systemic responses have not yet been fully elucidated. It is hypothesized that the gut-brain axis, which is a network of hierarchical anterior regulatory tissues, contributes largely to variations in FE. Therefore, full-sib pigs with extreme residual feed intake values were assigned to experimental groups of high and low FE. Relevant hormones, minerals, and metabolites including fatty acid profiles were analyzed in serum to assess postprandial conditions. Transcriptome profiles were deduced from intestinal (duodenum, jejunum, ileum) and neuroendocrine tissues (hypothalamus). Serum analyses of feed-efficient animals showed an increased content of the incretin GIP, calcium, magnesium, ß-hydroxybutyric acid, and fat compared with low-FE pigs. Complementary expression profiles in intestinal tissues indicate a modulated permeability and host-microbe interaction in FE-divergent pigs. Transcriptomic analyses of the hypothalamus showed that differences between the FE groups in appetite and satiety regulation are less pronounced. However, hypothalamic abundance of transcripts like ADCY7, LHCGR, and SLC2A7 and molecular signatures in local and systemic tissue sites indicate that increased allocation and circulation of energy equivalents, minerals, and hormones are promoted in feed-efficient animals. Overall, patterns of gastrointestinal hormones and gene expression profiles identified host-microbiota interaction, intestinal permeability, feed intake regulation, and energy expenditure as potential mechanisms affecting FE in pigs.


Asunto(s)
Conducta Alimentaria , Hormonas/sangre , Nutrientes/sangre , Porcinos/sangre , Porcinos/genética , Animales , Ácidos Grasos/sangre , Ontología de Genes , Redes Reguladoras de Genes , Minerales/sangre , Factores de Tiempo , Transcripción Genética
14.
BMC Genomics ; 19(1): 207, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554878

RESUMEN

BACKGROUND: In monogastric animals, phosphorus (P) homeostasis is maintained by regulating intestinal absorption, bone mobilization, and renal excretion. Since P is a non-renewable resource, a shortage is imminent due to widespread over-usage in the farming and animal husbandry industries. As a consequence, P efficiency should be improved in pig production. We sought to characterize the transcriptional response in re-/absorbing and excreting tissues in pigs to diets varying in calcium: phosphorus ratios. Weaned piglets were assigned to one of three groups fed diets varying in digestible P content for a period of five weeks. Gene expression profiles were analyzed in jejunum, colon, and kidney. RESULTS: Transcriptome analysis revealed that reduced dietary P intake affects gene expression in jejunum and kidney, but not in colon. The regulation of mineral homeostasis was reflected via altered mRNA abundances of CYP24A1, CYP27A1, TRPM6, SPP1, and VDR in jejunum and kidney. Moreover, lowered abundances of transcripts associated with the classical complement system pathway were observed in the jejunum. In kidney, shifted transcripts were involved in phospholipase C, calcium signaling, and NFAT signaling, which may have immunomodulatory implications. CONCLUSIONS: Our results revealed local transcriptional consequences of variable P intake in intestinal and renal tissues. The adaptive responses are the result of organismal efforts to maintain systemic mineral homeostasis while modulating immune features at local tissue sites. Therefore, the deviation from the currently recommended dietary P supply must be carefully considered, as the endogenous mechanisms that respond to low P diets may impact important adaptive immune responses.


Asunto(s)
Homeostasis , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Fósforo Dietético/administración & dosificación , Destete , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Colon/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Yeyuno/metabolismo , Minerales/metabolismo , Porcinos
15.
Mol Genet Genomics ; 292(5): 1001-1011, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28500374

RESUMEN

The consideration of feed efficiency traits is highly relevant in animal breeding due to economic and ecologic impacts of the efficient usage and utilization of feed resources. In pigs, corresponding observations are recorded using automatic feeding stations and serve as one of the main criteria in most pig selection programmes. Simultaneously, feeding stations also generate feeding behaviour data which represent a nearly unused resource and provide a valuable proxy measure of health status, animal welfare, and management practices. In the current study, an integrated approach was applied to a feed efficiency tested and genome-wide genotyped terminal sire line population. Therefore, genetic analyses were performed combining a single-marker based approach and a Bayesian multi-marker algorithm. Major quantitative trait loci (QTL) for feeding behaviour traits comprising daily occupation time, daily feeder visit, and daily feeding rate were identified on chromosomes 1, 4, 6, 7, 8, and 14. Feed efficiency was represented by feed conversion ratio and daily feed intake revealing prominent genomic regions on chromosomes 1, 6, 9, and 11. The positional and functional candidate genes identified are involved in transport processes like AQP4, SLC22A23, and SLC6A14 as well as energy sensing, generation, and utilization as exemplified by PPP3CA, IQGAP3, ECI2, and DnaJC15. These molecular features provide the first step towards the dissection of the genetic connection between distinct feeding behaviour patterns, feed efficiency and performance, health, and welfare traits driving the implementation of these traits in breeding programmes and pig husbandry.


Asunto(s)
Alimentación Animal/análisis , Conducta Alimentaria/fisiología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Animales , Estudio de Asociación del Genoma Completo , Sus scrofa/genética , Porcinos
16.
BMC Genomics ; 17: 531, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27485725

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in diverse biological processes via regulation of gene expression including in skeletal muscles. In the current study, miRNA expression profile was investigated in longissimus muscle biopsies of malignant hyperthermia syndrome-negative Duroc and Pietrain pigs with distinct muscle metabolic properties in order to explore the regulatory role of miRNAs related to mitochondrial respiratory activity and metabolic enzyme activity in skeletal muscle. RESULTS: A comparative analysis of the miRNA expression profile between Duroc and Pietrain pigs was performed, followed by integration with mRNA profiles based on their pairwise correlation and computational target prediction. The identified target genes were enriched in protein ubiquitination pathway, stem cell pluripotency and geranylgeranyl diphosphate biosynthesis, as well as skeletal and muscular system development. Next, we analyzed the correlation between individual miRNAs and phenotypical traits including muscle fiber type, mitochondrial respiratory activity, metabolic enzyme activity and adenosine phosphate concentrations, and constructed the regulatory miRNA-mRNA networks associated with energy metabolism. It is noteworthy that miR-25 targeting BMPR2 and IRS1, miR-363 targeting USP24, miR-28 targeting HECW2 and miR-210 targeting ATP5I, ME3, MTCH1 and CPT2 were highly associated with slow-twitch oxidative fibers, fast-twitch oxidative fibers, ADP and ATP concentration suggesting an essential role of the miRNA-mRNA regulatory networking in modulating the mitochondrial energy expenditure in the porcine muscle. In the identified miRNA-mRNA network, a tight relationship between mitochondrial and ubiquitin proteasome system at the level of gene expression was observed. It revealed a link between these two systems contributing to energy metabolism of skeletal muscle under physiological conditions. CONCLUSIONS: We assembled miRNA-mRNA regulatory networks based on divergent muscle properties between different pig breeds and further with the correlation analysis of expressed genes and phenotypic measurements. These complex networks relate to muscle fiber type, metabolic enzyme activity and ATP production and may contribute to divergent muscle phenotypes by fine-tuning the expression of genes. Altogether, the results provide an insight into a regulatory role of miRNAs in muscular energy metabolisms and may have an implication on meat quality and production.


Asunto(s)
Metabolismo Energético/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Mitocondrias Musculares/fisiología , Fibras Musculares Esqueléticas/metabolismo , ARN Mensajero/genética , Animales , Respiración de la Célula , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Fenotipo , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados , Porcinos
17.
BMC Genomics ; 17: 323, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142659

RESUMEN

BACKGROUND: In oviparous species accidental variation of incubation temperatures may occur under natural conditions and mechanisms may have evolved by natural selection that facilitate coping with these stressors. However, under controlled artificial incubation modification of egg incubation temperature has been shown to have a wide-ranging impact on post-hatch development in several poultry species. Because developmental changes initiated in-ovo can affect poultry production, understanding the molecular routes and epigenetic alterations induced by incubation temperature differences may allow targeted modification of phenotypes. RESULTS: In order to identify molecular pathways responsive to variable incubation temperature, broiler eggs were incubated at a lower or higher temperature (36.8 °C, 38.8 °C) relative to control (37.8 °C) over two developmental intervals, embryonic days (E) 7-10 and 10-13. Global gene expression of M. gastrocnemius was assayed at E10, E13, and slaughter age [post-hatch day (D) 35] (6 groups; 3 time points; 8 animals each) by microarray analysis and treated samples were compared to controls within each time point. Transcript abundance differed for between 113 and 738 genes, depending on treatment group, compared to the respective control. In particular, higher incubation temperature during E7-10 immediately affected pathways involved in energy and lipid metabolism, cell signaling, and muscle development more so than did other conditions. But lower incubation temperature during E10-13 affected pathways related to cellular function and growth, and development of organ, tissue, and muscle as well as nutrient metabolism pathways at D35. CONCLUSION: Shifts in incubation temperature provoke specific immediate and long-term transcriptional responses. Further, the transcriptional response to lower incubation temperature, which did not affect the phenotypes, mediates compensatory effects reflecting adaptability. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype, reflecting considerable phenotypic plasticity.


Asunto(s)
Pollos/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Músculo Esquelético/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Pollos/genética , Embrión no Mamífero/metabolismo , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Metabolismo de los Lípidos , Desarrollo de Músculos , Temperatura
18.
J Bioenerg Biomembr ; 48(1): 55-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26759028

RESUMEN

Skeletal muscles are metabolically active and have market value in meat-producing farm animals. A better understanding of biological pathways affecting energy metabolism in skeletal muscle could advance the science of skeletal muscle. In this study, comparative pathway-focused gene expression profiling in conjunction with muscle fiber typing were analyzed in skeletal muscles from Duroc, Pietrain, and Duroc-Pietrain crossbred pigs. Each breed type displayed a distinct muscle fiber-type composition. Mitochondrial respiratory activity and glycolytic and oxidative enzyme activities were comparable among genotypes, except for significantly lower complex I activity in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. At the transcriptional level, lactate dehydrogenase B showed breed specificity, with significantly lower expression in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. A similar mRNA expression pattern was shown for several subunits of oxidative phosphorylation complexes, including complex I, complex II, complex IV, and ATP synthase. Significant correlations were observed between mRNA expression of genes in focused pathways and enzyme activities in a breed-dependent manner. Moreover, expression patterns of pathway-focused genes were well correlated with muscle fiber-type composition. These results stress the importance of regulation of transcriptional rate of genes related to oxidative and glycolytic pathways in the metabolic capacity of muscle fibers. Overall, the results further the breed-specific understanding of the molecular basis of metabolic enzyme activities, which directly impact meat quality.


Asunto(s)
Cruzamiento , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Animales , Porcinos
19.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R917-25, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26962023

RESUMEN

Phosphorus (P) is of vital importance for many aspects of metabolism, including bone mineralization, blood buffering, and energy utilization. In order to identify molecular routes affecting intrinsic P utilization, we address processes covering P intake, uptake, metabolism, and excretion. In particular, the interrelation of bone tissue and immune features is of interest to approximate P intake to animal's physiology and health status. German Landrace piglets received different levels of digestible phosphorus: recommended, higher, or lower amounts. At multiple time points, relevant serum parameters were analyzed and radiologic studies on bone characteristics were performed. Peripheral blood mononuclear cells were collected to assess differential gene expression. Dietary differences were reflected by serum phosphorus, calcium, parathyroid hormone, and vitamin D. Bone reorganization was persistently affected as shown by microstructural parameters, cathepsin K levels, and transcripts associated with bone formation. Moreover, blood expression patterns revealed a link to immune response, highlighting bidirectional loops comprising bone formation and immune features, where the receptor-activator of NF-κB ligand/receptor-activator of NF-κB kinase system may play a prominent role. The modulated P supplementation provoked considerable organismal plasticity. Genes found to be differentially expressed due to variable P supply are involved in pathways relevant to P utilization and are potential candidate genes for improved P efficiency.


Asunto(s)
Alimentación Animal/análisis , Huesos/metabolismo , Fósforo Dietético/administración & dosificación , Fósforo/metabolismo , Porcinos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Densidad Ósea , Dieta/veterinaria , Relación Dosis-Respuesta a Droga , Transcriptoma
20.
Physiol Genomics ; 47(10): 470-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175500

RESUMEN

The genetic relationship between immune responsiveness and performance is not well understood, but a major topic of the evolution of resource allocation and of relevance in human medicine and livestock breeding, for instance. This study aims to show differences of transcript abundance changes during the time intervals before and after two tetanus toxoid (TT) vaccinations in domestic pigs differing in lean growth (LG) and anti-TT-antibody titers (AB) parameters of performance and immunocompetence. During response to the first vaccination all animals had a general decrease in transcript abundances related to various functional pathways as measured by comparative Affymetrix microarray hybridization and Ingenuity Pathway analyses. Low-AB phenotypes had predominantly decreased immune response transcripts. Combined phenotypes high-AB/high-LG had decreased transcripts related to growth factor signaling pathways. However, during the interval after the booster vaccination, high-LG and high-AB animals responded exclusively with increased immune transcripts, such as B-cell receptor signaling and cellular immune response pathways. In addition, high-LG and low-AB animals had predominantly increased transcripts of several cellular immune response pathways. Conversely, low-LG and high-AB animals had few elevated immune transcripts and decreased transcripts related to only two nonimmune-specific pathways. In response to booster vaccination high-LG phenotypes revealed enriched transcripts related to several different immune response pathways, regardless of AB phenotype. Different from the expected impact of AB titers, divergent AB phenotypes did not reflect considerable differences between immune transcripts. However, highly significant differences observed among divergent LG phenotypes suggest the compatibility of high performance and high vaccine responses.


Asunto(s)
Anticuerpos/metabolismo , Leucocitos Mononucleares/metabolismo , Sus scrofa/crecimiento & desarrollo , Sus scrofa/genética , Delgadez/genética , Transcriptoma/genética , Vacunación , Animales , Perfilación de la Expresión Génica , Modelos Animales , Fenotipo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA