Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552228

RESUMEN

The mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) controls cell growth, proliferation, and metabolism in response to diverse stimuli. Two major parallel pathways are implicated in mTORC1 regulation including a growth factor-responsive pathway mediated via TSC2/Rheb and an amino acid-responsive pathway mediated via the Rag GTPases. Here, we identify and characterize three highly conserved growth factor-responsive phosphorylation sites on RagC, a component of the Rag heterodimer, implicating cross talk between amino acid and growth factor-mediated regulation of mTORC1. We find that RagC phosphorylation is associated with destabilization of mTORC1 and is essential for both growth factor and amino acid-induced mTORC1 activation. Functionally, RagC phosphorylation suppresses starvation-induced autophagy, and genetic studies in Drosophila reveal that RagC phosphorylation plays an essential role in regulation of cell growth. Finally, we identify mTORC1 as the upstream kinase of RagC on S21. Our data highlight the importance of RagC phosphorylation in its function and identify a previously unappreciated auto-regulatory mechanism of mTORC1 activity.


Asunto(s)
Aminoácidos/metabolismo , Drosophila melanogaster/metabolismo , Homeostasis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células HEK293 , Células HeLa , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos/genética , Fosforilación , Homología de Secuencia , Transducción de Señal
2.
Cell Metab ; 29(2): 417-429.e4, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30449684

RESUMEN

Elevations in branched-chain amino acids (BCAAs) associate with numerous systemic diseases, including cancer, diabetes, and heart failure. However, an integrated understanding of whole-body BCAA metabolism remains lacking. Here, we employ in vivo isotopic tracing to systemically quantify BCAA oxidation in healthy and insulin-resistant mice. We find that most tissues rapidly oxidize BCAAs into the tricarboxylic acid (TCA) cycle, with the greatest quantity occurring in muscle, brown fat, liver, kidneys, and heart. Notably, pancreas supplies 20% of its TCA carbons from BCAAs. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a clinically targeted regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Together, this work provides a quantitative framework for understanding systemic BCAA oxidation in health and insulin resistance.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Ciclo del Ácido Cítrico , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Oxidación-Reducción
3.
Cell Rep ; 12(6): 937-43, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26235620

RESUMEN

The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Línea Celular , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/genética , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirimidinas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA