RESUMEN
BACKGROUND: This study investigates sex disparities in clinical outcomes and tumour immune profiles in patients with pancreatic ductal adenocarcinoma (PDAC) who underwent upfront resection or resection preceded by gemcitabine-based neoadjuvant chemoradiotherapy (nCRT). METHODS: Patients originated from the PREOPANC randomised controlled trial. Upfront surgery was performed in 82 patients, and 66 received nCRT before resection. The impact of sex on overall survival (OS) was investigated using Cox proportional hazards models. The immunological landscape within the tumour microenvironment (TME) was mapped using transcriptomic and spatial proteomic profiling. RESULTS: The 5-year OS rate differed between the sexes following resection preceded by nCRT, with 43% for women compared with 22% for men. In multivariate analysis, the female sex was a favourable independent prognostic factor for OS only in the nCRT group (HR 0.19; 95% CI 0.07 to 0.52). Multivariate heterogeneous treatment effects analysis revealed a significant interaction between sex and treatment, implying increased nCRT efficacy among women with resected PDAC. The TME of women contained fewer protumoural CD163+MRC1+M2 macrophages than that of men after nCRT, as indicated by transcriptomic and validated using spatial proteomic profiling. CONCLUSION: PDAC tumours of women are more sensitive to gemcitabine-based nCRT, resulting in longer OS after resection compared with men. This may be due to enhanced immunity impeding the infiltration of protumoral M2 macrophages into the TME. Our findings highlight the importance of considering sex disparities and mitigating immunosuppressive macrophage polarisation for personalised PDAC treatment.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Humanos , Femenino , Terapia Neoadyuvante , Gemcitabina , Proteómica , Pronóstico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Estudios Retrospectivos , Microambiente TumoralRESUMEN
Kidney transplant (KTx) biopsies showing transplant glomerulopathy (TG) (glomerular basement membrane double contours (cg) > 0) and microvascular inflammation (MVI) in the absence of C4d staining and donor-specific antibodies (DSAs) do not fulfill the criteria for chronic active antibody-mediated rejection (CA-AMR) diagnosis and do not fit into any other Banff category. To investigate this, we initiated a multicenter intercontinental study encompassing 36 cases, comparing the immunomic and transcriptomic profiles of 14 KTx biopsies classified as cg+MVI DSA-/C4d- with 22 classified as CA-AMR DSA+/C4d+ through novel transcriptomic analysis using the NanoString Banff-Human Organ Transplant (B-HOT) panel and subsequent orthogonal subset analysis using two innovative 5-marker multiplex immunofluorescent panels. Nineteen genes were differentially expressed between the two study groups. Samples diagnosed with CA-AMR DSA+/C4d+ showed a higher glomerular abundance of natural killer cells and higher transcriptomic cell type scores for macrophages in an environment characterized by increased expression of complement-related genes (i.e., C5AR1) and higher activity of angiogenesis, interstitial fibrosis tubular atrophy, CA-AMR, and DSA-related pathways when compared to samples diagnosed with cg+MVI DSA-/C4d-. Samples diagnosed with cg+MVI DSA-/C4d- displayed a higher glomerular abundance and activity of T cells (CD3+, CD3+CD8+, and CD3+CD8-). Thus, we show that using novel multiomic techniques, KTx biopsies with cg+MVI DSA-/C4d- have a prominent T-cell presence and activity, putting forward the possibility that these represent a more T-cell dominant phenotype.
Asunto(s)
Enfermedades Renales , Trasplante de Riñón , Humanos , Multiómica , Isoanticuerpos , Linfocitos T , Trasplante de Riñón/efectos adversos , Inflamación , Biopsia , Rechazo de Injerto , Fragmentos de Péptidos , Complemento C4bRESUMEN
Granulomatous disease affects up to 20% of patients with Common Variable Immunodeficiency (CVID). Granulomas are comprised of highly activated immune cells, and emerge in response to antigenic triggers. In CVID granulomas however, the underlying pathophysiology is unclear and the specific trigger remains unknown. Granuloma formation in CVID is often compared to sarcoidosis, although clinical context and prognosis differ, suggesting a different pathogenesis. The aim of this study was to investigate if the cellular organization and proteomics of granulomas in CVID is different from other granulomatous diseases. Therefore, tissue slides from formaldehyde fixed paraffin embedded biopsies obtained from patients with CVID, sarcoidosis, tuberculosis and foreign-material induced pseudo-sarcoidosis were stained with hematoxylin and eosin and assessed for histopathological characteristics. Targeted spatial protein analysis was performed, and immune fluorescent multiplex assays were used to analyze the cellular organization. Histological analysis revealed that CVID granulomas were smaller, less circumscribed, with fewer multinucleated giant cells and minimal fibrosis compared to the other granulomatous diseases. Spatial protein analysis showed that granulomas in all diseases expressed CD68, CD11c, CD44, CD127, and PD-L1. However in CVID, reduced expression of the fibrosis-related protein fibronectin, but enrichment of CD163, CD3 and FAPα inside CVID granulomas was observed. Immunofluorescence analysis conformed a different cellular organization in CVID granulomas with increased influx of neutrophils, macrophages, T and B lymphocytes. In conclusion, granulomas in CVID display a different histological and cellular organization with increased influx of myeloid and lymphoid cells, compared to sarcoidosis, tuberculosis and pseudo-sarcoidosis, indicating a distinct pathogenesis underlying granuloma formation.
Asunto(s)
Inmunodeficiencia Variable Común , Granuloma , Humanos , Inmunodeficiencia Variable Común/inmunología , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/patología , Inmunodeficiencia Variable Común/diagnóstico , Granuloma/patología , Granuloma/inmunología , Granuloma/etiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Sarcoidosis/inmunología , Sarcoidosis/patología , Sarcoidosis/etiología , Proteómica/métodos , Biopsia , Adulto JovenRESUMEN
This study aims to refine our understanding of the inherent heterogeneity in cervical cancer by exploring differential gene expression profiles, immune cell infiltration dynamics, and implicated signaling pathways in the two predominant histological types of cervix carcinoma, Squamous Cell Carcinoma (SCC) and Adenocarcinoma (ADC). Targeted gene expression data that were previously generated from samples of primary cervical cancer were re-analyzed. The samples were grouped based on their histopathology, comparing SCC to ADC. Each tumor in the study was confirmed to be high risk human papilloma virus (hrHPV) positive. A total of 21 cervical cancer samples were included, with 11 cases of SCC and 10 of ADC. Data analysis revealed a total of 26 differentially expressed genes, with 19 genes being overexpressed in SCC compared to ADC (Benjamini-Hochberg (BH)-adjusted p-value < 0.05). Importantly, the immune checkpoint markers CD274 and CTLA4 demonstrated significantly higher expression in SCC compared to ADC. In addition, SCC showed a higher infiltration of immune cells, including B and T cells, and cytotoxic cells. Higher activation of a variety of pathways was found in SCC samples including cytotoxicity, interferon signaling, metabolic stress, lymphoid compartment, hypoxia, PI3k-AKT, hedgehog signaling and Notch signaling pathways. Our findings show distinctive gene expression patterns, signaling pathway activations, and trends in immune cell infiltration between SCC and ADC in cervical cancer. This study underscores the heterogeneity within primary cervical cancer, emphasizing the potential benefits of subdividing these tumours based on histological and molecular differences.
Asunto(s)
Adenocarcinoma , Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/genética , Transducción de Señal , Biomarcadores de Tumor/genética , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Perfilación de la Expresión Génica , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Persona de Mediana Edad , Transcriptoma , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/complicacionesRESUMEN
AIMS: Lung tissue from COVID-19 patients shares similar histomorphological features with chronic lung allograft disease, also suggesting activation of autoimmune-related pathways in COVID-19. To more clearly understand the underlying spectrum of pathophysiology in COVID-19 pneumonia, we analysed mRNA expression of autoimmune-related genes in post-mortem lung tissue from COVID-19 patients. METHODS AND RESULTS: Formalin-fixed, paraffin-embedded lung tissue samples of 18 COVID-19 patients and eight influenza patients were used for targeted gene expression profiling using NanoString technology. Multiplex immunofluorescence for tryptase and chymase was applied for validation. Genes related to mast cells were significantly increased in COVID-19. This finding was strengthened by multiplex immunofluorescence also showing a significant increase of tryptase- and chymase-positive cells in COVID-19. Furthermore, receptors for advanced glycation end-products (RAGE) and pro-platelet basic protein (PPBP) were up-regulated in COVID-19 compared to influenza. Genes associated with Type I interferon signalling showed a significant correlation to detected SARS-CoV2 pathway-related genes. The comparison of lung tissue samples from both groups based on the presence of histomorphological features indicative of acute respiratory distress syndrome did not result in finding any specific gene or pathways. CONCLUSION: Two separate means of measuring show a significant increase of mast cells in SARS-CoV-2-infected lung tissue compared to influenza. Additionally, several genes involved in fibrosis and thrombosis, among which are RAGE and PPBP, are up-regulated in COVID-19. As mast cells are able to induce thrombosis and fibrosis, they may play an important role in the pathogenesis of COVID-19.
Asunto(s)
COVID-19 , Gripe Humana , Mastocitos , Fibrosis Pulmonar , Trombosis , Humanos , Quimasas , COVID-19/complicaciones , COVID-19/patología , Fibrosis , Gripe Humana/patología , Mastocitos/patología , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , ARN Viral , SARS-CoV-2 , Trombosis/etiología , Trombosis/patología , TriptasasRESUMEN
Phosphonic acids represent one of the most important categories of organophosphorus compounds, with myriad examples found in chemical biology, medicine, materials, and other domains. Phosphonic acids are rapidly and conveniently prepared from their simple dialkyl esters by silyldealkylation with bromotrimethylsilane (BTMS), followed by desilylation upon contact with water or methanol. Introduced originally by McKenna, the BTMS route to phosphonic acids has long been a favored method due to its convenience, high yields, very mild conditions, and chemoselectivity. We systematically investigated microwave irradiation as a means to accelerate the BTMS silyldealkylations (MW-BTMS) of a series of dialkyl methylphosphonates with respect to solvent polarity (ACN, dioxane, neat BTMS, DMF, and sulfolane), alkyl group (Me, Et, and iPr), electron-withdrawing P-substitution, and phosphonate-carboxylate triester chemoselectivity. Control reactions were performed using conventional heating. We also applied MW-BTMS to the preparation of three acyclic nucleoside phosphonates (ANPs, an important class of antiviral and anticancer drugs), which were reported to undergo partial nucleoside degradation under MW hydrolysis with HCl at 130-140 °C (MW-HCl, a proposed alternative to BTMS). In all cases, MW-BTMS dramatically accelerated quantitative silyldealkylation compared to BTMS with conventional heating and was highly chemoselective, confirming it to be an important enhancement of the conventional BTMS method with significant advantages over the MW-HCl method.
RESUMEN
Background: Cardiovascular disease (CVD) risk assessment and management (RAM) services face many challenges and barriers in the community. Mobile technology offers the opportunity to empower patients and improve access to health prevention strategies to overcome these barriers. However, there is limited information on the availability and use of CVDRAM-related mobile technology in the Arabic language. Objectives: To pilot test an Arabic version of a CVDRAM application among potential end-users accessing community pharmacy services in Qatar. Methodology: Translation of an established cardiovascular risk calculator (EPI·RxISK™) into the Arabic language was conducted. The English/Arabic version of the calculator was tested by potential end-users, consisting of a sample of community pharmacists (CRxs) and members of the public (MOP) accessing community pharmacy services. Semi-structured interviews were conducted based on the quality attributes of the Mobile Application Rating Scale (MARS). Data were analyzed using deductive content analysis. Results: A total of 10 CRxs and 5 MOP were interviewed. Five themes emerged to describe the EPI·RxISK™ calculator: Engagement, Functionality, Attractiveness, Education, and Responsiveness. For the most part, positive subthemes were associated with each of these themes. The functionality and educational themes had some negative subthemes. Conclusion: End-users of the EPI·RxISK™ calculator had mostly positive descriptors that were aligned with all five quality attributes of the web and mobile applications.
RESUMEN
The blood-brain barrier (BBB) is essential for cerebral homeostasis and controls the selective passage of molecules traveling in and out of the brain. Despite the crucial role of the BBB in a variety of brain diseases and its relevance for the development of drugs, there is little known about its molecular architecture. In particular, the composition of the basal lamina between the astrocytic end-feet and the endothelial cells is only partly known. Here, we present a proteomic analysis of the basal lamina of the human BBB. We combined laser capture microdissection with shotgun proteomics for selective enrichment and identification of specific proteins present in the cerebral microvasculature and arachnoidal vessels collected from normal human brain tissue specimens. Proteins found to be associated with the blood-brain barrier were validated by immunohistochemistry. Expression of membrane protein MLC1 was found in all brain barriers. Phosphoglucomutase-like protein 5 appeared to be variably present along the outer part of intracerebral vessels, and multidrug resistance protein 1 was identified in both intracerebral, as well as arachnoidal blood vessels. The results demonstrate the presence of so far unidentified proteins in the human BBB and illustrate topic differences in their expression. In conclusion, we showed that sample purification by microdissection followed by shotgun proteomics provides a list of proteins identified in the BBB. Subsequent immunohistochemistry detailed the respective expression sites of membrane protein MLC1 and phosphoglucomutase-related protein 5. The role of the identified proteins in the functioning of the BBB needs further investigations.
Asunto(s)
Barrera Hematoencefálica , Encéfalo , Células Endoteliales , Proteómica , Transporte Biológico , Humanos , Proteínas/metabolismoRESUMEN
The discovery of the IDH1 R132H (IDH1 mut) mutation in low-grade glioma and the associated change in function of the IDH1 enzyme has increased the interest in glioma metabolism. In an earlier study, we found that changes in expression of genes involved in the aerobic glycolysis and the TCA cycle are associated with IDH1 mut. Here, we apply proteomics to FFPE samples of diffuse gliomas with or without IDH1 mutations, to map changes in protein levels associated with this mutation. We observed significant changes in the enzyme abundance associated with aerobic glycolysis, glutamate metabolism, and the TCA cycle in IDH1 mut gliomas. Specifically, the enzymes involved in the metabolism of glutamate, lactate, and enzymes involved in the conversion of α-ketoglutarate were increased in IDH1 mut gliomas. In addition, the bicarbonate transporter (SLC4A4) was increased in IDH1 mut gliomas, supporting the idea that a mechanism preventing intracellular acidification is active. We also found that enzymes that convert proline, valine, leucine, and isoleucine into glutamate were increased in IDH1 mut glioma. We conclude that in IDH1 mut glioma metabolism is rewired (increased input of lactate and glutamate) to preserve TCA-cycle activity in IDH1 mut gliomas.
Asunto(s)
Glioma/genética , Glioma/metabolismo , Adulto , Anciano , Cromatografía Liquida , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Técnicas In Vitro , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Espectrometría de Masas , Persona de Mediana Edad , Modelos Teóricos , Mutación/genéticaRESUMEN
In this study, we explored the predictive value of serum microRNA (miRNA) expression for early tumor progression during FOLFIRINOX chemotherapy and its association with overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC). A total of 132 PDAC patients of all disease stages were included in this study, of whom 25% showed progressive disease during FOLFIRINOX according to the RECIST criteria. MiRNA expression was analyzed in serum collected before the start and after one cycle of chemotherapy. In the discovery cohort (n = 12), a 352-miRNA RT-qPCR panel was used. In the validation cohorts (total n = 120), miRNA expression was detected using individual RT-qPCR miRNA primers. Before the start of FOLFIRINOX, serum miR-373-3p expression was higher in patients with progressive disease compared to patients with disease control after FOLFIRINOX (Log2 fold difference (FD) 0.88, p = 0.006). MiR-194-5p expression after one cycle of FOLFIRINOX was lower in patients with progressive disease (Log2 FD -0.29, p = 0.044). Both miRNAs were predictors of early tumor progression in a multivariable model including disease stage and baseline CA19-9 level (miR-373-3p odds ratio (OR) 3.99, 95% CI 1.10-14.49; miR-194-5p OR 0.91, 95% CI 0.83-0.99). MiR-373-3p and miR-194-5p did not show an association with OS after adjustment for disease stage, baseline CA19-9, and chemotherapy response. In conclusion, high serum miR-373-3p before the start and low serum miR-194-5p after one cycle are associated with early tumor progression during FOLFIRINOX.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Biomarcadores de Tumor/genética , MicroARNs/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Carbohidratos Asociados a Tumores/sangre , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Progresión de la Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Irinotecán/administración & dosificación , Irinotecán/farmacología , Leucovorina/administración & dosificación , Leucovorina/farmacología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oxaliplatino/administración & dosificación , Oxaliplatino/farmacología , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Estudios ProspectivosRESUMEN
Formalin-fixed paraffin-embedded (FFPE) tissues are routinely prepared and collected for diagnostics in pathology departments. These are, therefore, the most accessible research sources in pathology archives. In this study we investigated whether we can apply a targeted and quantitative parallel reaction monitoring (PRM) method for FFPE tissue samples in a sensitive and reproducible way. The feasibility of this technical approach was demonstrated for normal brain and glioblastoma multiforme tissues. Two methods were used: PRM measurement of a tryptic digest without phosphopeptide enrichment (Direct-PRM) and after Fe-NTA phosphopeptide enrichment (Fe-NTA-PRM). With these two methods, the phosphorylation ratio could be determined for four selected peptide pairs that originate from neuroblast differentiation-associated protein (AHNAK S5448-p), calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D T337-p), eukaryotic translation initiation factor 4B (EIF4B S93-p), and epidermal growth factor receptor (EGFR S1166-p). In normal brain FFPE tissues, the Fe-NTA-PRM method enabled the quantification of targeted phosphorylated peptides with high reproducibility (CV < 14%). Our results indicate that formalin fixation does not impede relative quantification of a phospho-site and its phosphorylation ratio in FFPE tissues. The developed workflow combining these methods opens ways to study archival FFPE tissues for phosphorylation ratio determination in proteins.
Asunto(s)
Formaldehído , Proteómica , Espectrometría de Masas , Adhesión en Parafina , Fosforilación , Reproducibilidad de los Resultados , Fijación del TejidoRESUMEN
The discovery of genes and molecular pathways involved in the formation of brain metastasis would direct the development of therapeutic strategies to prevent this deadly complication of cancer. By comparing gene expression profiles of Estrogen Receptor negative (ER-) primary breast tumors between patients who developed metastasis to brain and to organs other than brain, we found that T lymphocytes promote the formation of brain metastases. To functionally test the ability of T cells to promote brain metastasis, we used an in vitro blood-brain barrier (BBB) model. By co-culturing T lymphocytes with breast cancer cells, we confirmed that T cells increase the ability of breast cancer cells to cross the BBB. Proteomics analysis of the tumor cells revealed Guanylate-Binding Protein 1 (GBP1) as a key T lymphocyte-induced protein that enables breast cancer cells to cross the BBB. The GBP1 gene appeared to be up-regulated in breast cancer of patients who developed brain metastasis. Silencing of GBP1 reduced the ability of breast cancer cells to cross the in vitro BBB model. In addition, the findings were confirmed in vivo in an immunocompetent syngeneic mouse model. Co-culturing of ErbB2 tumor cells with activated T cells induced a significant increase in Gbp1 expression by the cancer cells. Intracardial inoculation of the co-cultured tumor cells resulted in preferential seeding to brain. Moreover, intracerebral outgrowth of the tumor cells was demonstrated. The findings point to a role of T cells in the formation of brain metastases in ER- breast cancers, and provide potential targets for intervention to prevent the development of cerebral metastases.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al GTP/metabolismo , Linfocitos T/metabolismo , Adulto , Anciano , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Proteínas de Unión al GTP/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia/fisiopatología , Trasplante de Neoplasias , Proteoma , ARN Mensajero/metabolismoRESUMEN
Luminogenic probes were designed and synthesized for the detection of uptake transporter activity in a lytic cell-based assay. These probes rely on a self-cleavable trimethyl lock quinone-cyanobenzothiazole (TMQ-CNBT) or trimethyl lock quinone-luciferin (TMQ-Luc) linked to the anion transporter substrate fluorescein. Upon cellular transport, the TMQ is reduced by viable cells, resulting in the facile intramolecular lactonization and rapid release of the bioluminescent reporter molecule. The uptake transporter activity can then be detected without removing and washing off the extracellular substrates. Six probes were tested with OATP1B1*1a and OATP1B3 overexpressing HEK293 cells, and all compounds showed up to 10.2-fold enhancement in uptake when compared to control cells. Uptake of TMQ-luciferin compounds 2, 4, and 6 increased linearly over time up to 30 min at a concentration ranging from 40 nM to 20 µM. The apparent Km values obtained at different time intervals up to 30 min were nearly identical for a given compound, which validates the 30 min window as appropriate for uptake transporter assays. The average apparent Km values ranged from 0.3 to 0.8 µM and 0.2 to 1.3 µM for OATP1B1*1a and OATP1B3, respectively, indicating good affinities to these anion transporters. Furthermore, uptake of compound 2 was inhibited by two inhibitors of OATP1B1*1a and OATP1B3: rifampicin and ritonavir. The preliminary results obtained from compound 2 exhibited a time-dependent, saturatable, and inhibitable nature of uptake, indicating the feasibility of using the probe for the detection of a transporter-mediated process. This add-and-read homogeneous assay may provide a convenient, rapid, and facile way to detect changes in transporter activity in a high-throughput format, and this assay design strategy could create a new platform for a general cell uptake assay for biomaterials in the future.
Asunto(s)
Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Sustancias Luminiscentes/química , Imagen Molecular/métodos , Sondas Moleculares/química , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Benzotiazoles/química , Transporte Biológico/efectos de los fármacos , Técnicas de Química Sintética , Luciferina de Luciérnaga/análogos & derivados , Luciferina de Luciérnaga/química , Luciferina de Luciérnaga/farmacocinética , Fluoresceína/química , Fluoresceínas/química , Fluoresceínas/farmacocinética , Células HEK293 , Humanos , Cinética , Transportador 1 de Anión Orgánico Específico del Hígado/análisis , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Mediciones Luminiscentes/métodos , Sondas Moleculares/síntesis química , Sondas Moleculares/farmacocinética , Nitrilos/química , Transportadores de Anión Orgánico Sodio-Independiente/análisis , Transportadores de Anión Orgánico Sodio-Independiente/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones OrgánicosRESUMEN
Almost all samples used in tumor biology, such as tissues and bodily fluids, are heterogeneous, i.e., consist of different cell types. Evaluating the degree of heterogeneity in samples can increase our knowledge on processes such as clonal selection and metastasis. In addition, generating expression profiles from specific sub populations of cells can reveal their distinct functions. Tissue heterogeneity also poses a challenge, as it can confound the interpretation of gene expression data. This chapter will (1) give a brief overview on how heterogeneity may influence gene expression profiling data and (2) describe the methods that are currently available to assess transcriptional biomarkers in a heterogeneous cell population.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Perfilación de la Expresión Génica/métodos , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Molécula de Adhesión Celular Epitelial , Femenino , Humanos , Células Neoplásicas Circulantes/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , ARN/aislamiento & purificación , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de la Célula IndividualRESUMEN
The molecular pathways involved in neovascularization of regenerating tissues and tumor angiogenesis resemble each other. However, the regulatory mechanisms of neovascularization under neoplastic circumstances are unbalanced leading to abnormal protein expression patterns resulting in the formation of defective and often abortive tumor vessels. Because gliomas are among the most vascularized tumors, we compared the protein expression profiles of proliferating vessels in glioblastoma with those in tissues in which physiological angiogenesis takes place. By using a combination of laser microdissection and LTQ Orbitrap mass spectrometry comparisons of protein profiles were made. The approach yielded 29 and 12 differentially expressed proteins for glioblastoma and endometrium blood vessels, respectively. The aberrant expression of five proteins, i.e. periostin, tenascin-C, TGF-beta induced protein, integrin alpha-V, and laminin subunit beta-2 were validated by immunohistochemistry. In addition, pathway analysis of the differentially expressed proteins was performed and significant differences in the usage of angiogenic pathways were found. We conclude that there are essential differences in protein expression profiles between tumor and normal physiological angiogenesis.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Endometrio/irrigación sanguínea , Glioblastoma/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Proteoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/irrigación sanguínea , Moléculas de Adhesión Celular/metabolismo , Femenino , Glioblastoma/irrigación sanguínea , Humanos , Integrina alfaV/metabolismo , Laminina/metabolismo , Masculino , Persona de Mediana Edad , Tenascina/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
BACKGROUND: FOLFIRINOX chemotherapy has improved outcomes for pancreatic cancer patients, but poor long-term survival outcomes and high toxicity remain challenges. This study investigates the impact of FOLFIRINOX on plasma proteins and peripheral immune cells to guide immune-based combination therapies and, ideally, to identify a potential biomarker to predict early disease progression during FOLFIRINOX. METHODS: Blood samples were collected from 86 pancreatic cancer patients before and two weeks after the first FOLFIRINOX cycle and subjected to comprehensive immune cell and proteome profiling. Principal Component Analysis and Linear Mixed Effect Regression models were used for data analysis. FOLFIRINOX efficacy was radiologically evaluated after the fourth cycle. RESULTS: One cycle of FOLFIRINOX diminished tumour-cell-related pathways and enhanced pathways related to immune activation, illustrated by an increase in pro-inflammatory IL-18, IL-15, and TNFRSF4. Similarly, FOLFIRINOX promoted the activation of CD4 + and CD8 + T cells, the proliferation of NK(T), and the activation of antigen-presenting cells. Furthermore, high pre-treatment levels of VEGFA and PRDX3 and an elevation in FCRL3 levels after one cycle predicted early progression under FOLFIRINOX. Finally, patients with progressive disease exhibited high levels of inhibitory markers on B cells and CD8 + T cells, while responding patients exhibited high levels of activation markers on CD4 + and CD8 + T cell subsets. CONCLUSION: FOLFIRINOX has immunomodulatory effects, providing a foundation for clinical trials exploring immune-based combination therapies that harness the immune system to treat pancreatic cancer. In addition, several plasma proteins hold potential as circulating predictive biomarkers for early prediction of FOLFIRINOX response in patients with pancreatic cancer.
Asunto(s)
Neoplasias Pancreáticas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Irinotecán/uso terapéutico , Fluorouracilo/uso terapéutico , Leucovorina/uso terapéutico , Proteínas SanguíneasRESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is often treated with FOLFIRINOX, a chemotherapy associated with high toxicity rates and variable efficacy. Therefore, it is crucial to identify patients at risk of early progression during treatment. This study aims to explore the potential of a multi-omics biomarker for predicting early PDAC progression by employing an in-depth mathematical modeling approach. METHODS: Blood samples were collected from 58 PDAC patients undergoing FOLFIRINOX before and after the first cycle. These samples underwent gene (GEP) and inflammatory protein expression profiling (IPEP). We explored the predictive potential of exclusively IPEP through Stepwise (Backward) Multivariate Logistic Regression modeling. Additionally, we integrated GEP and IPEP using Bayesian Kernel Regression modeling, aiming to enhance predictive performance. Ultimately, the FOLFIRINOX IPEP (FFX-IPEP) signature was developed. RESULTS: Our findings revealed that proteins exhibited superior predictive accuracy than genes. Consequently, the FFX-IPEP signature consisted of six proteins: AMN, BANK1, IL1RL2, ITGB6, MYO9B, and PRSS8. The signature effectively identified patients transitioning from disease control to progression early during FOLFIRINOX, achieving remarkable predictive accuracy with an AUC of 0.89 in an independent test set. Importantly, the FFX-IPEP signature outperformed the conventional CA19-9 tumor marker. CONCLUSIONS: Our six-protein FFX-IPEP signature holds solid potential as a liquid biomarker for the early prediction of PDAC progression during toxic FOLFIRINOX chemotherapy. Further validation in an external cohort is crucial to confirm the utility of the FFX-IPEP signature. Future studies should expand to predict progression under different chemotherapies to enhance the guidance of personalized treatment selection in PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Teorema de Bayes , Fluorouracilo/uso terapéutico , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Biomarcadores de Tumor , Irinotecán , Oxaliplatino , LeucovorinaRESUMEN
This study underscores GATA6's role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6's prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.
Asunto(s)
Carcinoma Ductal Pancreático , Factor de Transcripción GATA6 , Neoplasias Pancreáticas , Fenotipo , Humanos , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Masculino , Femenino , Pronóstico , Anciano , Persona de Mediana Edad , Macrófagos/inmunología , Macrófagos/metabolismo , Resultado del Tratamiento , Terapia Neoadyuvante/métodos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genéticaRESUMEN
PURPOSE: Amid the need for new approaches to improve survival in pancreatic ductal adenocarcinoma (PDAC), immune-based therapies have garnered interest. Rintatolimod, a Toll-like receptor 3 (TLR-3) agonist, is a potential candidate due to its dual impact on restraining PDAC cell functions and boosting the antitumor immune response. This study investigates the effect of TLR-3 activation through rintatolimod on the peripheral immune landscape of patients with advanced PDAC. EXPERIMENTAL DESIGN: Paired blood samples of 30 patients with advanced PDAC, collected at baseline and after 12 rintatolimod intravenous infusions, underwent comprehensive transcriptomic NanoString and proteomic flow cytometry profiling. The impact of rintatolimod and immunologic factors on survival outcomes was assessed through univariate Cox proportional hazards models. RESULTS: Rintatolimod treatment enhances peripheral immune activity at the transcriptomic and proteomic levels, particularly involving type 1 conventional dendritic cells (cDC1) and T cells. Post-rintatolimod, the increased peripheral abundance of BTLA+ XCR1+ cDC1s and CD4+SELL+ T cells correlated with improved clinical outcomes. Patients with stable disease exhibited pronouncedDCand T-cell activation gene overexpression. Notably, the expression of immune checkpoints PD-L1 and PD-L2 decreased post-rintatolimod across all patients. However, those with progressive disease showed increased expression of genes encoding IDO1 and PD-1. CONCLUSIONS: This study presents compelling evidence of the immune-stimulatory properties linked to TLR-3 activation through rintatolimod. Rintatolimod may break immunologic tolerance by enhancing antitumor immunity through DC-mediated Th-cell responses. Furthermore, our findings lay the groundwork for investigating the potential synergy between TLR-3 activation and immune checkpoint inhibitor therapy to improve therapeutic outcomes. See related commentary by Martínez-Riaño et al., p. 3355.
Asunto(s)
Células Dendríticas , Neoplasias Pancreáticas , Humanos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Femenino , Masculino , Receptor Toll-Like 3/agonistas , Persona de Mediana Edad , Anciano , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patologíaRESUMEN
Oncolytic virus (OV) clinical trials have demonstrated remarkable efficacy in subsets of patients with glioblastoma (GBM). However, the lack of tools to predict this response hinders the advancement of a more personalized application of OV therapy. In this study, we characterize an ex vivo co-culture system designed to examine the immune response to OV infection of patient-derived GBM neurospheres in the presence of autologous peripheral blood mononuclear cells (PBMCs). Co-culture conditions were optimized to retain viability and functionality of both tumor cells and PBMCs, effectively recapitulating the well-recognized immunosuppressive effects of GBM. Following OV infection, we observed elevated secretion of pro-inflammatory cytokines and chemokines, including interferon γ, tumor necrosis factor α, CXCL9, and CXCL10, and marked changes in immune cell activation markers. Importantly, OV treatment induced unique patient-specific immune responses. In summary, our co-culture platform presents an avenue for personalized screening of viro-immunotherapies in GBM, offering promise as a potential tool for future patient stratification in OV therapy.