Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angiogenesis ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316206

RESUMEN

Inflammasome activation is implicated in diseases of aberrant angiogenesis such as age-related macular degeneration (AMD), though its precise role in choroidal neovascularization (CNV), a characteristic pathology of advanced AMD, is ill-defined. Reports on inhibition of inflammasome constituents on CNV are variable and the precise role of inflammasome in mediating pathological angiogenesis is unclear. Historically, subretinal injection of inflammasome agonists alone has been used to investigate retinal pigmented epithelium (RPE) degeneration, while the laser photocoagulation model has been used to study pathological angiogenesis in a model of CNV. Here, we report that the simultaneous introduction of any of several disease-relevant inflammasome agonists (Alu or B2 RNA, Alu cDNA, or oligomerized amyloid ß (1-40)) exacerbates laser-induced CNV. These activities were diminished or abrogated by genetic or pharmacological targeting of inflammasome signaling constituents including P2rx7, Nlrp3, caspase-1, caspase-11, and Myd88, as well as in myeloid-specific caspase-1 knockout mice. Alu RNA treatment induced inflammasome activation in macrophages within the CNV lesion, and increased accumulation of macrophages in an inflammasome-dependent manner. Finally, IL-1ß neutralization prevented inflammasome agonist-induced chemotaxis, macrophage trafficking, and angiogenesis. Collectively, these observations support a model wherein inflammasome stimulation promotes and exacerbates CNV and may be a therapeutic target for diseases of angiogenesis such as neovascular AMD.

2.
Invest Ophthalmol Vis Sci ; 64(5): 3, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129905

RESUMEN

Purpose: Rhegmatogenous retinal detachment (RRD) is a vision-threatening event that benefits from surgical intervention. While awaiting surgical reattachment, irreversible hypoxic and inflammatory damage to the retina often occurs. An interim therapy protecting photoreceptors could improve functional outcomes. We sought to determine whether Kamuvudine-9 (K-9), a derivative of nucleoside reverse transcriptase inhibitors (NRTIs) that inhibits inflammasome activation, and the NRTIs lamivudine (3TC) and azidothymidine (AZT) could protect the retina following RRD. Methods: RRD was induced in mice via subretinal injection (SRI) of 1% carboxymethylcellulose (CMC). To simulate outcomes following the clinical management of RRD, we determined the optimal conditions by which SRI of CMC induced spontaneous retinal reattachment (SRR) occurs over 10 days (RRD/SRR). K-9, 3TC, or AZT was administered via intraperitoneal injection. Inflammasome activation pathways were monitored by abundance of cleaved caspase-1, IL-18, and cleaved caspase-8, and photoreceptor death was assessed by TUNEL staining. Retinal function was assessed by full-field scotopic electroretinography. Results: RRD induced retinal inflammasome activation and photoreceptor death in mice. Systemic administration of K-9, 3TC, or AZT inhibited retinal inflammasome activation and photoreceptor death. In the RRD/SRR model, K-9 protected retinal electrical function during the time of RRD and induced an improvement following retinal reattachment. Conclusions: K-9 and NRTIs exhibit anti-inflammatory and neuroprotective activities in experimental RRD. Given its capacity to protect photoreceptor function during the period of RRD and enhance retinal function following reattachment, K-9 shows promise as a retinal neuroprotectant and warrants study in RRD. Further, this novel RRD/SRR model may facilitate experimental evaluation of functional outcomes relevant to RRD.


Asunto(s)
Desprendimiento de Retina , Animales , Ratones , Desprendimiento de Retina/cirugía , Inflamasomas , Agudeza Visual , Retina , Estudios Retrospectivos , Vitrectomía
3.
medRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993694

RESUMEN

Innate immune signaling through the NLRP3 inflammasome has been implicated in the pathogenesis of Alzheimer's disease (AD), the most prevalent form of dementia. We previously demonstrated that nucleoside reverse transcriptase inhibitors (NRTIs), drugs approved to treat HIV and hepatitis B infections, also inhibit inflammasome activation. Here we report that in humans, NRTI exposure was associated with a significantly lower incidence of AD in two of the largest health insurance databases in the United States. Treatment of aged 5xFAD mice (a mouse model of amyloid-ß deposition that expresses five mutations found in familial AD) with Kamuvudine-9 (K-9), an NRTI-derivative with enhanced safety profile, reduced Aß deposition and reversed their cognitive deficit by improving their spatial memory and learning performance to that of young wild-type mice. These findings support the concept that inflammasome inhibition could benefit AD and provide a rationale for prospective clinical testing of NRTIs or K-9 in AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA