Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Medchemcomm ; 10(11): 1900-1906, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32206236

RESUMEN

The intracellular polymerization and the concomitant sickling processes, central to the pathology of sickle cell disease, can be mitigated by increasing the oxygen affinity of sickle hemoglobin (HbS). Attempts to develop azolylacryloyl derivatives to covalently interact with ßCys93 and destabilize the low-O2-affinity T-state (deoxygenated) HbS to the polymer resistant high-O2-affinity R-state (liganded) HbS were only partially successful. This was likely due to the azolylacryloyls carboxylate moiety directing the compounds to also bind in the central water cavity of deoxygenated Hb and stabilizing the T-state. We now report a second generation of KAUS compounds (KAUS-28, KAUS-33, KAUS-38, and KAUS-39) without the carboxylate moiety designed to bind exclusively to ßCys93. As expected, the compounds showed reactivity with both free amino acid l-Cys and the Hb ßCys93. At 2 mM concentrations, the compounds demonstrated increased Hb affinity for oxygen (6% to 15%) in vitro, while the previously reported imidazolylacryloyl carboxylate derivative, KAUS-15 only showed 4.5% increase. The increased O2 affinity effects were sustained through the experimental period of 12 h for KAUS-28, KAUS-33, and KAUS-38, suggesting conserved pharmacokinetic profiles. When incubated at 2 mM with red blood cells from patients with homozygous SS, the compounds inhibited erythrocyte sickling by 5% to 9%, respectively in correlation with the increase Hb-O2 affinity. These values compare to 2% for KAUS-15. When tested with healthy mice, KAUS-38 showed very low toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA