Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 48(17): 9621-9636, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32853367

RESUMEN

The regulation of T cell receptor Tcra gene rearrangement has been extensively studied. The enhancer Eα plays an essential role in Tcra rearrangement by establishing a recombination centre in the Jα array and a chromatin hub for interactions between Vα and Jα genes. But the mechanism of the Eα and its downstream CTCF binding site (here named EACBE) in dynamic chromatin regulation is unknown. The Hi-C data showed that the EACBE is located at the sub-TAD boundary which separates the Tcra-Tcrd locus and the downstream region including the Dad1 gene. The EACBE is required for long-distance regulation of the Eα on the proximal Vα genes, and its deletion impaired the Tcra rearrangement. We also noticed that the EACBE and Eα regulate the genes in the downstream sub-TAD via asymmetric chromatin extrusion. This study provides a new insight into the role of CTCF binding sites at TAD boundaries in gene regulation.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Sitios de Unión , Factor de Unión a CCCTC/genética , Cromatina/genética , Regulación de la Expresión Génica , Reordenamiento Génico de la Cadena alfa de los Receptores de Antígenos de los Linfocitos T , Proteínas de Homeodominio/genética , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Mutantes , Timo/citología
2.
J Immunol ; 194(2): 790-4, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25472997

RESUMEN

The Tcra/Tcrd locus undergoes V-Dδ-Jδ rearrangement in CD4(-)CD8(-) thymocytes to form the TCRδ chain of the γδ TCR and V-Jα rearrangement in CD4(+)CD8(+) thymocytes to form the TCRα-chain of the αß TCR. Most V segments in the locus participate in V-Jα rearrangement, but only a small and partially overlapping subset participates in V-Dδ-Jδ rearrangement. What specifies any particular Tcra/Tcrd locus V gene segment as a Vδ, a Vα, or both is currently unknown. We tested the hypothesis that V segment usage is specified by V segment promoter-dependent chromatin accessibility in developing thymocytes. TRAV15/DV6 family V gene segments contribute to both the Tcrd and the Tcra repertoires, whereas TRAV12 family V gene segments contribute almost exclusively to the Tcra repertoire. To understand whether the TRAV15/DV6 promoter region specifies TRAV15/DV6 as a Vδ, we used gene targeting to replace the promoter region of a TRAV12 family member with one from a TRAV15/DV6 family member. The TRAV15/DV6 promoter region conferred increased germline transcription and histone modifications to TRAV12 in double-negative thymocytes and caused a substantial increase in usage of TRAV12 in Tcrd recombination events. Our results demonstrate that usage of TRAV15/DV6 family V gene segments for Tcrd recombination in double-negative thymocytes is regulated, at least in part, by intrinsic features of TRAV15/DV6 promoters, and argue that Tcra/Tcrd locus Vδ gene segments are defined by their local chromatin accessibility in CD4(-)CD8(-) thymocytes.


Asunto(s)
Reordenamiento Génico de la Cadena alfa de los Receptores de Antígenos de los Linfocitos T , Reordenamiento Génico de la Cadena delta de los Receptores de Antígenos de los Linfocitos T , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T , Sitios Genéticos , Regiones Promotoras Genéticas , Animales , Marcación de Gen , Ratones , Timocitos/citología
3.
Sci Immunol ; 9(93): eadh5318, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489350

RESUMEN

Recombination activating gene (RAG) expression increases as thymocytes transition from the CD4-CD8- double-negative (DN) to the CD4+CD8+ double-positive (DP) stage, but the physiological importance and mechanism of transcriptional up-regulation are unknown. Here, we show that a DP-specific component of the recombination activating genes antisilencer (DPASE) provokes elevated RAG expression in DP thymocytes. Mouse DP thymocytes lacking the DPASE display RAG expression equivalent to that in DN thymocytes, but this supports only a partial Tcra repertoire due to inefficient secondary Vα-Jα rearrangement. These data indicate that RAG up-regulation is required for a replete Tcra repertoire and that RAG expression is fine-tuned during lymphocyte development to meet the requirements of distinct antigen receptor loci. We further show that transcription factor RORγt directs RAG up-regulation in DP thymocytes by binding to the DPASE and that RORγt influences the Tcra repertoire by binding to the Tcra enhancer. These data, together with prior work showing RORγt to control Tcra rearrangement by regulating DP thymocyte proliferation and survival, reveal RORγt to orchestrate multiple pathways that support formation of the Tcra repertoire.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Timocitos , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Receptores de Antígenos de Linfocitos T alfa-beta , Factores de Transcripción/genética , Expresión Génica
4.
J Biol Chem ; 285(10): 7587-97, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20051517

RESUMEN

The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose "C((d))C((S))C((S))" (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.


Asunto(s)
Citosina/química , Inestabilidad Genómica , Proteínas de Homeodominio , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex , Secuencia de Bases , Citosina/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Tejido Linfoide/fisiología , Proteínas de Unión a Maltosa , Datos de Secuencia Molecular , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Mutación Puntual , Recombinación Genética
5.
DNA Repair (Amst) ; 7(8): 1384-91, 2008 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-18524693

RESUMEN

P1 nuclease is one of the most extensively used single-strand DNA specific nucleases in molecular biology. In modern biology, it is used as an enzymatic probe to detect altered DNA conformations. It is well documented that P1 cleaves single-stranded nucleic acids and single-stranded DNA regions. The fact that P1 can act under a wide range of conditions, including physiological pH and temperature make it the most commonly used enzymatic probe in DNA structural studies. Surprisingly, to this date, there is no study to characterize the influence of length of mismatches on P1 sensitivity. Using a series of radioactively labeled oligomeric DNA substrates-containing mismatches, we find that P1 nuclease cleavage is dependent on the length of mismatches. P1 does not cleave DNA when there is a single-base mismatch. P1 cleavage efficiency is optimum when mismatch length is 3 nt or more. Changing the position of the mismatches also does not make any difference in cleavage efficacy. These novel findings on P1 properties have implications for its use in DNA structure and DNA repair studies.


Asunto(s)
Disparidad de Par Base , Desoxirribonucleasas/metabolismo , Secuencia de Bases , Cartilla de ADN , Inestabilidad Genómica , Hidrólisis , Permanganato de Potasio/química
6.
J Exp Med ; 216(1): 231-243, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30545902

RESUMEN

Expression of Rag1 and Rag2 is tightly regulated in developing T cells to mediate TCR gene assembly. Here we have investigated the molecular mechanisms governing the assembly and disassembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Rag1 and Rag2 gene expression in CD4+CD8+ thymocytes depends on Rag1 and Rag2 promoter activation by a distant antisilencer element (ASE). We identify GATA3 and E2A as critical regulators of the ASE, and Runx1 and E2A as critical regulators of the Rag1 promoter. We reveal hierarchical assembly of a transcriptionally active chromatin hub containing the ASE and RAG promoters, with Rag2 recruitment and expression dependent on assembly of a functional ASE-Rag1 framework. Finally, we show that signal-dependent down-regulation of RAG gene expression in CD4+CD8+ thymocytes depends on Ikaros and occurs with disassembly of the RAG locus chromatin hub. Our results provide important new insights into the molecular mechanisms that orchestrate RAG gene expression in developing T cells.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Regulación de la Expresión Génica/fisiología , Sitios Genéticos/fisiología , Proteínas de Homeodominio/biosíntesis , Timocitos/metabolismo , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Proteínas de Unión al ADN/genética , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Proteínas de Homeodominio/genética , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Ratones , Elementos de Respuesta/fisiología , Timocitos/citología
7.
J Exp Med ; 212(5): 809-24, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25847946

RESUMEN

Rag1 and Rag2 gene expression in CD4(+)CD8(+) double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes.


Asunto(s)
Diferenciación Celular/inmunología , Cromatina/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas de Homeodominio/inmunología , Proteínas de Unión a la Región de Fijación a la Matriz/inmunología , Elementos de Respuesta/inmunología , Timocitos/inmunología , Animales , Diferenciación Celular/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Timocitos/citología
8.
J Mol Biol ; 415(3): 475-88, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22119487

RESUMEN

During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Recombinación V(D)J , Cinética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA