Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Appl Environ Microbiol ; 90(9): e0123524, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39133001

RESUMEN

Mucin glycoproteins are a significant source of carbon for the gut bacteria. Various gut microbial species possess diverse hydrolytic enzymes and catabolic pathways for breaking down mucin glycans, resulting in competition for the limited nutrients within the gut environment. Adherence to mucin glycans represents a crucial strategy used by gut microbes to access nutrient reservoirs. Understanding these properties is pivotal for comprehending the survival mechanisms of bacteria in the gastrointestinal tract. However, characterization of individual strains within the vast array of coexisting bacteria in the microbiome is challenging. To investigate this, we developed mucin-immobilized particles by immobilizing porcine gastric mucin (PGM) onto glass beads chemically modified with boronic acid. These PGM-immobilized particles were then anaerobically cultured with human fecal microbiota, and the bacteria adhering to PGM were isolated. Interestingly, the microbiome composition remained largely unchanged irrespective of PGM immobilization. Nonetheless, bacteria isolated from PGM-immobilized glass particles exhibited notably higher N-acetylgalactosaminidase activity compared to the control beads. Furthermore, Bacteroides strains isolated from PGM-immobilized glass particles displayed enhanced adhesive and metabolic properties to PGM. These findings underscore the utility of PGM particles in enriching and isolating specific microbes. Moreover, they highlight substantial differences in microbial properties at the strain level. We anticipate that PGM-immobilized particles will advance culture-based microbiome research, emphasizing the significance of strain-level characterization. IMPORTANCE: Metabolism of mucin glycans by gut bacteria represents a crucial strategy for accessing nutrient reservoirs. The efficacy of mucin glycan utilization among gut bacteria hinges on the metabolic capabilities of individual strains, necessitating meticulous strain-level characterization. In this investigation, we used glass beads chemically immobilized with mucins to selectively enrich bacteria from fecal fermentation cultures, based on their superior adhesion to and metabolism of mucin glycoproteins. These findings lend support to the hypothesis that the physical interactions between bacteria and mucin glycoprotein components directly correlate with their capacity to utilize mucins as nutrient sources. Furthermore, our study implies that physical proximity may significantly influence bacterial nutrient acquisition within the ecosystem, facilitating gut bacteria's access to carbohydrate components.


Asunto(s)
Bacterias , Adhesión Bacteriana , Microbioma Gastrointestinal , Animales , Porcinos , Humanos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Mucinas/metabolismo , Mucinas Gástricas/metabolismo
2.
Langmuir ; 40(13): 7178-7191, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506447

RESUMEN

The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and ßCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.

3.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930995

RESUMEN

Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.

4.
Soft Matter ; 19(14): 2491-2504, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36942886

RESUMEN

The interactions between vesicle and substrate have been studied by simulation and experiment. We grafted polyacrylic acid brushes containing cysteine side chains at a defined area density on planar lipid membranes. Specular X-ray reflectivity data indicated that the addition of Cd2+ ions induces the compaction of the polymer brush layer and modulates the adhesion of lipid vesicles. Using microinterferometry imaging, we determined the onset level, [CdCl2] = 0.25 mM, at which the wetting of the vesicle emerges. The characteristics of the interactions between vesicle and brush were quantitatively evaluated by the shape of the vesicle near the substrate and height fluctuations of the membrane in contact with brushes. To analyze these experiments, we have systematically studied the shape and adhesion of axially symmetric vesicles for finite-range membrane-substrate interaction, i.e., a relevant experimental characteristic, through simulations. The wetting of vesicles sensitively depends on the interaction range and the approximate estimates of the capillary length change significantly, depending on the adhesion strength. We found, however, that the local transversality condition that relates the maximal curvature at the edge of the adhesion zone to the adhesion strength remains rather accurate even for a finite interaction range as long as the vesicle is large compared to the interaction range.

5.
Soft Matter ; 18(26): 4953-4962, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748314

RESUMEN

Supramolecular hydrogels utilizing host-guest interactions (HG gels) exhibit large deformability and pronounced viscoelasticity. The inclusion complexes between ß-cyclodextrin (host) and adamantane (guest) units on the water-soluble polymers form transient bonds. The HG gels show significant stress relaxation with finite equilibrium stress following the step strain. The stress relaxation process reflects the detachment dynamics of the transient bonds which sustain the initial stress, while the finite equilibrium stress is preserved by the permanent topological cross-links with a rotaxane structure. Nonlinear stress relaxation experiments in biaxial stretching with various combinations of two orthogonal strains unambiguously reveal that time and strain effects on stress are not separable. The relaxation is accelerated for a short time frame (<102 s) with an increase in the magnitude of strain, whereas it is retarded for a longer time window with an increase in the anisotropy of the imposed biaxial strain. The time-strain inseparability in the HG gels is in contrast to the simple nonlinear viscoelasticity of a dual cross-link gel with covalent and transient cross-links in which the separability was previously validated by the same assessment. We currently interpret that the significant susceptibility of the detachment dynamics to the deformation type results from the structural characteristics of the HG gels, i.e., the host and guest moieties covalently connected to the network chains, the considerably low concentrations (<0.1 M) of these moieties, and the slidability of the permanent rotaxane cross-links.

6.
Langmuir ; 35(23): 7538-7551, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30376342

RESUMEN

Biological cells in tissues alter their shapes, positions, and orientations in response to dynamic changes in their physical microenvironments. Here, we investigated the dynamic response of myoblast cells by fabricating substrates displaying microwrinkles that can reversibly change their direction within 60 s by axial compression and relaxation. To quantitatively assess the collective order of cells, we introduced the nematic order parameter of cells that takes not only the distribution of cell-wrinkle angles but also the degree of cell elongation into account. On the subcellular level, we also calculated the nematic order parameter of actin cytoskeletons that takes the rearrangement of actin filaments into consideration. The results obtained on substrates with different wrinkle wavelengths implied the presence of a characteristic wavelength beyond which the order parameters of both cells and actin cytoskeletons level off. Immunofluorescence labeling of vinculin showed that the focal adhesions were all concentrated on the peaks of wrinkles when the wavelength is below the characteristic value. On the other hand, we found focal adhesions on both the peaks and the troughs of wrinkles when the wavelength exceeds the characteristic level. The emergence of collective ordering of cytoskeletons and the adaptation of cell shapes and orientations were monitored by live cell imaging after the seeding of cells from suspensions. After the cells had reached the steady state, the orientation of wrinkles was abruptly changed by 90°. The dynamic response of myoblasts to the drastic change in surface topography was monitored, demonstrating the coordination of the shape and orientation of cells and the nematic ordering of actin cytoskeletons. The "dynamic" substrates established in this study can be used as a powerful tool in mechanobiology that helps us understand how cytoskeletons, cells, and cell ensembles respond to dynamic contact guidance cues.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Forma de la Célula , Mioblastos/citología , Animales , Línea Celular , Adhesiones Focales/metabolismo , Ratones
7.
Soft Matter ; 15(10): 2163-2169, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30672948

RESUMEN

In the present work, three kinds of reducing sugars: glucose, galactose, and mannose, are applied to horseradish peroxidase (HRP)-catalyzed hydrogelation of an aqueous solution containing natural polymers modified with phenolic hydroxyl moieties. In this system, HRP consumes hydrogen peroxide that was generated from the oxidation of thiol groups in HRP in the presence of reducing sugars. Herein, we highlight the versatility of applicable sugar types and the controllable hydrogel properties. The mechanical properties and microstructures of the resultant hydrogels can be well controlled by varying the concentration and the reducing power of sugars. Moreover, reducing sugar-independent cytocompatibility of the hydrogels was confirmed by the growth of cells on them. The wide selection of sugar types provides a better understanding of the reaction mechanism and enables the characterization of hydrogels with well-controlled properties.


Asunto(s)
Biocatálisis , Peroxidasa de Rábano Silvestre/metabolismo , Hidrogeles/química , Peróxido de Hidrógeno/química , Sustancias Reductoras/química , Azúcares/química , Peroxidasa de Rábano Silvestre/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica
8.
Biomacromolecules ; 19(2): 672-679, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29393630

RESUMEN

Visible light-induced hydrogelation is attractive for various biomedical applications. In this study, hydrogels of alginate with phenolic hydroxyl groups (Alg-Ph) were obtained by irradiating a solution containing the polymer, ruthenium II trisbipyridyl chloride ([Ru(bpy)3]2+) and sodium persulfate (SPS), with visible light. The hydrogelation kinetics and the mechanical properties of the resultant hydrogels were tunable by controlling the intensity of the light and the concentrations of [Ru(bpy)3]2+ and SPS. With appropriate concentrations of [Ru(bpy)3]2+ and SPS, the hydrogel could be obtained following approximately 10 s of irradiation using a normal desktop lamp. The hydrogelation process and the resultant hydrogel were cytocompatible; mouse fibroblast cells enclosed in the Alg-Ph hydrogel maintained more than 90% viability for 1 week. The solution containing Alg-Ph, [Ru(bpy)3]2+ and SPS was useful as a bioink for stereolithographic bioprinting. Cell-laden hydrogel constructs could be printed using the bioprinting system equipped with a visible light projector without a significant decrease in cell viability in the presence of photoabsorbent Acid Red 18. The hydrogel construct including a perfusable helical lumen of 1 mm in diameter could be fabricated using the printing system. These results demonstrate the significant potential of this visible light-induced hydrogelation system and the stereolithographic bioprinting using the hydrogelation system for tissue engineering and regenerative medicine.


Asunto(s)
Alginatos , Bioimpresión/métodos , Fibroblastos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato , Luz , Ensayo de Materiales , Rodaminas , Alginatos/química , Alginatos/farmacología , Animales , Complejos de Coordinación/química , Fibroblastos/citología , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Cinética , Ratones , Rodaminas/química , Rodaminas/farmacología , Compuestos de Sodio/química , Sulfatos/química
9.
Chem Pharm Bull (Tokyo) ; 65(4): 330-335, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28381672

RESUMEN

Smart design of polymeric materials may lead to intelligent materials exhibiting unique functional properties. Looking at nature, living systems use specific and reversible intermolecular interactions in realizing complex functions. Hence reversible bonds based on selective molecular recognition can impart artificial materials with unique functional properties. This review mainly focuses on supramolecular polymeric materials based on cyclodextrin-based host-guest interactions. Polymeric materials using molecular recognition at polymer main chain, side chain, and termini are described. Polymers carrying host and guest residues exhibit unique properties such as: 1) formation of macroscopic self-assembly of polymer gels carrying host and guest residues; 2) stimuli-responsive self-healing properties due to the reversible nature of host-guest interactions; and 3) macroscopic motion of artificial muscle cross-linked by host-guest interaction controlled by external stimuli. An overview of recent developments in this new frontier between materials science and life science is given.


Asunto(s)
Ciclodextrinas/química , Polímeros/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Polímeros/síntesis química
10.
Macromol Rapid Commun ; 37(1): 86-92, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26398922

RESUMEN

Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated.

11.
Acc Chem Res ; 47(7): 2128-40, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24911321

RESUMEN

CONSPECTUS: Cyclodextrins (CDs) have many attractive functions, including molecular recognition, hydrolysis, catalysis, and polymerization. One of the most important uses of CDs is for the molecular recognition of hydrophobic organic guest molecules in aqueous solutions. CDs are desirable host molecules because they are environmentally benign and offer diverse functions. This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years. In 1990, we developed topological supramolecular complexes with CDs, polyrotaxane, and CD tubes, and these preparation methods take advantage of self-organization between the CDs and the polymers. The combination of polyrotaxane with αCD forms a hydrogel through the interaction of αCDs with the OH groups on poly(ethylene glycol). We categorized these polyrotaxane chemistries within main chain type complexes. At the same time, we studied the interactions of side chain type supramolecular complexes with CDs. In these systems the guest molecules modified the polymers and selectively formed inclusion complexes with CDs. The systems that used low molecular weight compounds did not show such selectivity with CDs. The multivalency available within the complex cooperatively enhances the selective binding of CD with guest molecules via the polymer side chains, a phenomenon that is analogous to binding patterns observed in antigen-antibody complexes. To incorporate the molecular recognition properties of CDs within the polymer side chains, we first prepared stimuli-responsive sol-gel switching materials through host-guest interactions. We chose azobenzene derivatives for their response to light and ferrocene derivatives for their response to redox conditions. The supramolecular materials were both redox-responsive and self-healing, and these properties resulted from host-guest interactions. These sol-gels with built in switches gave us insight for creating materials that were self-healing or could serve as artificial muscle. Furthermore, we developed another self-healing material with CD inclusion complexes that showed selective self-healing properties after its surface was cut. These CD self-healing materials do not include chemical cross-linkers; instead the inclusion complex of CDs with guest molecules stabilized the material's strength. However, by introducing chemical cross-linkers into the hydrogels, we produced materials that could expand and contract. The chemical cross-linked hydrogels with responsive groups bent in response to external stimuli, and the cross-linkers controlled the ratio of inclusion complexes. Furthermore, we used the molecular recognition of CDs to achieve macroscopic self-assemblies, and this chemistry can direct these macroscopic objects into even larger aggregated structures. As we have demonstrated, reversible host-guest interactions have tremendous potential for the creation of a wide variety of functional materials.


Asunto(s)
Ciclodextrinas/química , Sustancias Macromoleculares/química , Polímeros/química , Órganos Artificiales , Compuestos Azo/química , Compuestos Ferrosos/química , Hidrogeles/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Metalocenos , Conformación Molecular , Estructura Molecular , Músculos/química , Oxidación-Reducción , Polietilenglicoles/química , Solventes/química , Temperatura , Rayos Ultravioleta
12.
Chemistry ; 21(7): 2770-4, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25536911

RESUMEN

We have created a selective macroscopic self-assembly process by using polymer gels modified with complementary DNA oligonucleotides or nucleobases. The hydrogels modified with complementary DNA oligonucleotides adhered to each other by simple contact. The organogels modified with complementary nucleobases selectively formed macroscopic assemblies by agitation in nonpolar organic solvents. The adhesion strength of each gel was estimated semi-quantitatively by stress-strain measurements. We achieved direct adhesion between macroscopic materials both in water and in organic media, based on complementary hydrogen bonds.


Asunto(s)
Emparejamiento Base/genética , Sitios de Unión , Enlace de Hidrógeno , Estructura Molecular , Conformación de Ácido Nucleico , Compuestos Orgánicos
13.
Angew Chem Int Ed Engl ; 54(31): 8984-7, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26080301

RESUMEN

Supramolecular materials cross-linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross-linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host-guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host-guest inclusion complexes of ß-cyclodextrin (ßCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (ßCD-Ad-Fc gel). The ßCD-Ad-Fc gel showed self-healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the ßCD-Ad-Fc gel showed a redox-responsive shape-morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.


Asunto(s)
Compuestos Azo/química , Hidrogeles/química , Conformación Molecular , Estructura Molecular
14.
Macromol Rapid Commun ; 35(19): 1646-52, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25163447

RESUMEN

Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.


Asunto(s)
Adhesivos , Vidrio , Hidrogeles , Propiedades de Superficie
15.
Angew Chem Int Ed Engl ; 53(14): 3617-21, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24596338

RESUMEN

The macroscopic self-assembly of polymeric hydrogels modified with ß-cyclodextrin (ßCD gel), ferrocene (Fc gel), and styrenesulfonic acid sodium salt (SSNa gel) was investigated. Under reductive conditions, the Fc gel selectively adhered to the ßCD gel through a host-guest interaction. On the other hand, the oxidized ferrocenium (Fc(+)) gel selectively adhered to the SSNa gel through an ionic interaction under oxidative conditions. The adhesion strength was estimated by a tensile test. We finally succeeded in forming an ABC-type macroscopic assembly of all three gels through two discrete noncovalent interactions.


Asunto(s)
Ciclodextrinas/química , Hidrogeles/química , Oxidación-Reducción , Polímeros
16.
Sci Rep ; 14(1): 20676, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237578

RESUMEN

In these decades, considerable attention has focused on supramolecular polymers due to their unique structures and properties. More recently, macroscopic supramolecular polymers have attracted increasing interest from not only biologists but also materials scientists inspired by the sophisticated structures and functions of living organisms. Since the functions of supramolecular polymers are strongly dependent on their shape, control of the shape is an important issue in controlling the functions of supramolecular polymers. However, the control of shape in macroscopic supramolecular assemblies has not yet been sufficiently investigated. Previously, we studied the macroscopic self-assembly behavior of super absorbent polymer (SAP) microparticles modified with ß-cyclodextrin (ßCD) and adamantane (Ad) residues (ßCD(x)-SAP and Ad(y)-SAP microparticles, where x and y are the mol% contents of ßCD and Ad residues, respectively). More elongated assemblies were formed at higher y, indicating that the shape of assemblies can be controlled by varying the interaction strength. The noteworthy is that 1-adamantanamine hydrochloride (AdNH3Cl) assisted the formation of assemblies from ßCD(x)-SAP and Ad(y)-SAP microparticles, indicating that AdNH3Cl acts as a chemical stimulus for macroscopic assemblies of ßCD(x)-SAP and Ad(y)-SAP microparticles. In this study, we have thus studied the assembling behavior of ßCD(x)-SAP microparticles with Ad(y)-SAP microparticles and unmodified SAP microparticles assisted by AdNH3Cl, as well as the shape of the resulting macroscopic assemblies. AdNH3Cl assisted the formation of assemblies from ßCD(16.2)-SAP and Ad(15.1)-SAP microparticles, in which AdNH3Cl crosslinked the SAP microparticles through the formation of inclusion complexes of ßCD residues with the Ad residue and the electrostatic interaction of ammonium and carboxylate residues. Assemblies of ßCD(26.7)-SAP and unmodified SAP microparticles were formed at the concentrations of AdNH3Cl ([AdNH3Cl]0) higher than a certain level (ca. 0.05 mM). The aspect ratio (a/b) of assemblies showed a maximum at [AdNH3Cl]0 ~ 0.10 mM, indicating that the chemical stimulus, i.e., addition of AdNH3Cl, controls the shape of assemblies formed from ßCD(26.7)-SAP and unmodified SAP microparticles. This study suggests that other stimuli, e.g., heat, pH, light, redox, and force, can be utilized to control the shape of macroscopic assemblies based on supramolecular interactions.

17.
J Biosci Bioeng ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343697

RESUMEN

The fibroblast growth factor-2 (FGF-2) is a critical protein for biological processes such as angiogenesis and tissue regeneration. Recently, hydrogels based on semi-synthetic sulfated polysaccharides have been developed for the controlled delivery of FGF-2. These affinity-based FGF-2 carriers utilizing hydrogels based on sulfated polysaccharides enable sustained delivery of FGF-2, yet choice of materials is limited. Here, we demonstrate a novel synthetic sulfated polysaccharide-based hydrogel based on bacterial polyglucuronic acid (PGU). We synthesized phenol-grafted sulfated PGU (PGUS-Ph), an enzymatically cross-linkable PGU derivative that exhibited an enhanced affinity for FGF-2. The aqueous solution of PGUS-Ph, when combined with FGF-2, could be injected into affected sites and form a hydrogel in a minimally invasive manner. The FGF-2 released from the PGUS-Ph hydrogel induced blood vessel formation, as proven by a chick embryo-based angiogenesis assay. Our results indicate that the PGUS-Ph has the potential as an enzymatically cross-linkable and minimally invasively injectable affinity-based FGF-2 delivery system.

18.
Nat Commun ; 15(1): 5824, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992009

RESUMEN

Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.


Asunto(s)
Metales Pesados , Polímeros , Purificación del Agua , Polímeros/química , Purificación del Agua/métodos , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Biodegradación Ambiental , Contaminantes Químicos del Agua/química , Cadmio/química , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Celulosa/química , Dióxido de Silicio/química , Iones/química
19.
Adv Healthc Mater ; 13(10): e2302607, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118064

RESUMEN

Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Transducción de Señal , Matriz Extracelular , Módulo de Elasticidad
20.
Polymers (Basel) ; 15(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177345

RESUMEN

Ruthenium(II)-catalyzed azide-alkyne cycloaddition (RuAAC) polymerization of t-butyl 4-azido-5-hexynoate (tBuAH), i.e., a heterobifunctional monomer carrying azide and alkyne moieties, was investigated in this study. RuAAC of the monofunctional precursors of tBuAH yielded a dimer possessing a 1,5-disubstituted 1,2,3-triazole moiety. 1H NMR data showed that the dimer was a mixture of diastereomers. Polymerization of tBuAH using ruthenium(II) (Ru(II)) catalysts produced oligomers of Mw ≈ (2.7-3.6) × 103 consisting of 1,5-disubstituted 1,2,3-triazole units (1,5-units) as well as 1,4-disubstituted 1,2,3-triazole units (1,4-units). The fractions of 1,5-unit (f1,5) were roughly estimated to be ca. 0.8 by comparison of signals of the methine and triazole protons in 1H NMR spectra, indicating that RuAAC proceeded preferentially and thermal Huisgen cycloaddition (HC) somehow took place during the polymerization. The oligomer samples obtained were also characterized by solubility test, size exclusion chromatography (SEC), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). The UV-Vis and TGA data indicated that the oligomer samples contained a substantial amount of Ru(II) catalysts. To the best of our knowledge, this is the first report on dense 1,2,3-triazole oligomers consisting of 1,5-units linked via a carbon atom.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA