Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(16): e2114935119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412896

RESUMEN

In humans, obstetrical difficulties arise from the large head and broad shoulders of the neonate relative to the maternal birth canal. Various characteristics of human cranial development, such as the relatively small head of neonates compared with adults and the delayed fusion of the metopic suture, have been suggested to reflect developmental adaptations to obstetrical constraints. On the other hand, it remains unknown whether the shoulders of humans also exhibit developmental features reflecting obstetrical adaptation. Here we address this question by tracking the development of shoulder width from fetal to adult stages in humans, chimpanzees, and Japanese macaques. Compared with nonhuman primates, shoulder development in humans follows a different trajectory, exhibiting reduced growth relative to trunk length before birth and enhanced growth after birth. This indicates that the perinatal developmental characteristics of the shoulders likely evolved to ease obstetrical difficulties such as shoulder dystocia in humans.


Asunto(s)
Distocia de Hombros , Hombro , Animales , Femenino , Desarrollo Fetal , Humanos , Macaca fuscata , Pan troglodytes , Parto , Embarazo , Riesgo , Hombro/embriología , Hombro/crecimiento & desarrollo , Distocia de Hombros/epidemiología
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495351

RESUMEN

Late Miocene great apes are key to reconstructing the ancestral morphotype from which earliest hominins evolved. Despite consensus that the late Miocene dryopith great apes Hispanopithecus laietanus (Spain) and Rudapithecus hungaricus (Hungary) are closely related (Hominidae), ongoing debate on their phylogenetic relationships with extant apes (stem hominids, hominines, or pongines) complicates our understanding of great ape and human evolution. To clarify this question, we rely on the morphology of the inner ear semicircular canals, which has been shown to be phylogenetically informative. Based on microcomputed tomography scans, we describe the vestibular morphology of Hispanopithecus and Rudapithecus, and compare them with extant hominoids using landmark-free deformation-based three-dimensional geometric morphometric analyses. We also provide critical evidence about the evolutionary patterns of the vestibular apparatus in living and fossil hominoids under different phylogenetic assumptions for dryopiths. Our results are consistent with the distinction of Rudapithecus and Hispanopithecus at the genus rank, and further support their allocation to the Hominidae based on their derived semicircular canal volumetric proportions. Compared with extant hominids, the vestibular morphology of Hispanopithecus and Rudapithecus most closely resembles that of African apes, and differs from the derived condition of orangutans. However, the vestibular morphologies reconstructed for the last common ancestors of dryopiths, crown hominines, and crown hominids are very similar, indicating that hominines are plesiomorphic in this regard. Therefore, our results do not conclusively favor a hominine or stem hominid status for the investigated dryopiths.


Asunto(s)
Hominidae/anatomía & histología , Hominidae/clasificación , Filogenia , Vestíbulo del Laberinto/anatomía & histología , Animales , Fósiles , Análisis de Componente Principal , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34853174

RESUMEN

Body and canine size dimorphism in fossils inform sociobehavioral hypotheses on human evolution and have been of interest since Darwin's famous reflections on the subject. Here, we assemble a large dataset of fossil canines of the human clade, including all available Ardipithecus ramidus fossils recovered from the Middle Awash and Gona research areas in Ethiopia, and systematically examine canine dimorphism through evolutionary time. In particular, we apply a Bayesian probabilistic method that reduces bias when estimating weak and moderate levels of dimorphism. Our results show that Ar. ramidus canine dimorphism was significantly weaker than in the bonobo, the least dimorphic and behaviorally least aggressive among extant great apes. Average male-to-female size ratios of the canine in Ar. ramidus are estimated as 1.06 and 1.13 in the upper and lower canines, respectively, within modern human population ranges of variation. The slightly greater magnitude of canine size dimorphism in the lower than in the upper canines of Ar. ramidus appears to be shared with early Australopithecus, suggesting that male canine reduction was initially more advanced in the behaviorally important upper canine. The available fossil evidence suggests a drastic size reduction of the male canine prior to Ar. ramidus and the earliest known members of the human clade, with little change in canine dimorphism levels thereafter. This evolutionary pattern indicates a profound behavioral shift associated with comparatively weak levels of male aggression early in human evolution, a pattern that was subsequently shared by Australopithecus and Homo.


Asunto(s)
Diente Canino/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Teorema de Bayes , Evolución Biológica , Femenino , Hominidae/clasificación , Humanos , Masculino , Modelos Teóricos , Filogenia , Caracteres Sexuales
4.
Proc Natl Acad Sci U S A ; 117(35): 21251-21257, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817513

RESUMEN

A large brain combined with an upright posture in humans has resulted in a high cephalopelvic proportion and frequently obstructed labor. Fischer and Mitteroecker [B. Fischer, P. Mitteroecker, Proc. Natl. Acad. Sci. U.S.A. 112, 5655-5660 (2015)] proposed that the morphological covariations between the skull and pelvis could have evolved to ameliorate obstructed labor in humans. The availability of quantitative data of such covariation, especially of the fetal skull and maternal pelvis, however, is still scarce. Here, we present direct evidence of morphological covariations between the skull and pelvis using actual mother-fetus dyads during the perinatal period of Macaca mulatta, a species that exhibits cephalopelvic proportions comparable to modern humans. We analyzed the covariation of the three-dimensional morphology of the fetal skull and maternal pelvis using computed tomography-based models. The covariation was mostly observed at the pelvic locations related to the birth canal, and the forms of the birth canal and fetal skull covary in such a way that reduces obstetric difficulties. Therefore, cephalopelvic covariation could have evolved not only in humans, but also in other primate taxa in parallel, or it could have evolved already in the early catarrhines.


Asunto(s)
Desproporción Cefalopelviana/fisiopatología , Pelvis/anatomía & histología , Cráneo/anatomía & histología , Animales , Antropología Física/métodos , Evolución Biológica , Desproporción Cefalopelviana/genética , Parto Obstétrico , Femenino , Feto , Hominidae , Humanos , Macaca mulatta/embriología , Macaca mulatta/crecimiento & desarrollo , Parto/fisiología , Pelvis/fisiología , Embarazo , Cráneo/fisiología
5.
J Hum Evol ; 157: 103032, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34233242

RESUMEN

Pliopithecoids are a diverse group of Miocene catarrhine primates from Eurasia. Their positional behavior is still unknown, and many species are known exclusively from dentognathic remains. Here, we describe a proximal radius (IPS66267) from the late Miocene of Castell de Barberà (Vallès-Penedès Basin, NE Iberian Peninsula) that represents the first postcranial specimen of the pliopithecoid Barberapithecus huerzeleri. A body mass estimate based on the radius is compared with dental estimates, and its morphology is compared with that of extant and fossil anthropoids by qualitative means as well as by landmark-based three-dimensional geometric morphometrics. The estimated body mass of ∼5 kg for IPS66267 closely matches the dental estimates for the (female) holotype, thereby discounting an alternative attribution to the large-bodied hominoid recorded at Castell de Barberà. In multiple features (oval and moderately tilted head with a pronounced lateral lip and a restricted articular area for the capitulum; proximodistally expanded proximal radioulnar joint; and short, robust, and anteroposteriorly compressed neck), the specimen differs from hominoids and resembles instead extant nonateline monkeys and stem catarrhines. The results of the morphometric analysis further indicate that the Barberapithecus proximal radius shows closer similarities with nonsuspensory arboreal cercopithecoids and the dendropithecid Simiolus. From a locomotor viewpoint, the radius of Barberapithecus lacks most of the features functionally related to climbing and/or suspensory behaviors and displays instead a proximal radioulnar joint that would have been particularly stable under pronation. On the other hand, the Barberapithecus radius differs from other stem catarrhines in the less anteroposteriorly compressed and less tilted radial head with a deeper capitular fovea, suggesting a somewhat enhanced mobility at the elbow joint. We conclude that pronograde arboreal quadrupedalism was the main component of the locomotor repertoire of Barberapithecus but that, similar to other crouzeliids, it might have displayed better climbing abilities than pliopithecids.


Asunto(s)
Catarrinos/anatomía & histología , Fósiles , Locomoción , Radio (Anatomía)/anatomía & histología , Animales , Femenino , Masculino
6.
J Hum Evol ; 155: 102982, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33862402

RESUMEN

The middle Miocene stem kenyapithecine Nacholapithecus kerioi (16-15 Ma; Nachola, Kenya) is represented by a large number of isolated fossil remains and one of the most complete skeletons in the hominoid fossil record (KNM-BG 35250). Multiple fieldwork seasons performed by Japanese-Kenyan teams during the last part of the 20th century resulted in the discovery of a large sample of Nacholapithecus fossils. Here, we describe the new femoral remains of Nacholapithecus. In well-preserved specimens, we evaluate sex differences and within-species variation using both qualitative and quantitative traits. We use these data to determine whether these specimens are morphologically similar to the species holotype KNM-BG 35250 (which shows some plastic deformation) and to compare Nacholapithecus with other Miocene hominoids and extant anthropoids to evaluate the distinctiveness of its femur. The new fossil evidence reaffirms previously reported descriptions of some distal femoral traits, namely the morphology of the patellar groove. However, results also show that relative femoral head size in Nacholapithecus is smaller, relative neck length is longer, and neck-shaft angle is lower than previously reported for KNM-BG 35250. These traits have a strong functional signal related to the hip joint kinematics, suggesting that the morphology of the proximal femur in Nacholapithecus might be functionally related to quadrupedal-like behaviors instead of more derived antipronograde locomotor modes. Results further demonstrate that other African Miocene apes (with the exception of Turkanapithecus kalakolensis) generally fall within the Nacholapithecus range of variation, whose overall femoral shape resembles that of Ekembo spp. and Equatorius africanus. Our results accord with the previously inferred locomotor repertoire of Nacholapithecus, indicating a combination of generalized arboreal quadrupedalism combined with other antipronograde behaviors (e.g., vertical climbing).


Asunto(s)
Evolución Biológica , Fémur/anatomía & histología , Fósiles , Hominidae/anatomía & histología , Hominidae/clasificación , Animales , Femenino , Hominidae/fisiología , Kenia , Masculino , Especificidad de la Especie
7.
J Hum Evol ; 153: 102964, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33713985

RESUMEN

Reconstruction of the locomotor repertoire of the australopiths (Australopithecus and Paranthropus) has progressively integrated information from the mechanosensitive internal structure of the appendicular skeleton. Recent investigations showed that the arrangement of the trabecular network at the femoral head center is biomechanically compatible with the pattern of cortical bone distribution across the neck, both suggesting a full commitment to bipedalism in australopiths, but associated with a slightly altered gait kinematics compared to Homo involving more lateral deviation of the body center of mass over the stance limb. To provide a global picture in Paranthropus robustus of the trabecular architecture of the proximal femur across the head, neck and greater trochanter compartments, we applied techniques of virtual imaging to the variably preserved Early Pleistocene specimens SK 82, SK 97, SK 3121, SKW 19 and SWT1/LB-2 from the cave site of Swartkrans, South Africa. We also assessed the coherence between the structural signals from the center of the head and those from the trabecular network of the inferolateral portion of the head and the inferior margin of the neck, sampling the so-called vertical bundle, which in humans represents the principal compressive system of the joint. Our analyses show a functionally related trabecular organization in Pa. robustus that closely resembles the extant human condition, but which also includes some specificities in local textural arrangement. The network of the inferolateral portion of the head shows a humanlike degree of anisotropy and a bone volume fraction intermediate between the extant human and the African ape patterns. These results suggest slight differences in gait kinematics between Pa. robustus and extant humans. The neck portion of the vertical bundle revealed a less biomechanically sensitive signal. Future investigations on the australopith hip joint loading environment should more carefully investigate the trabecular structure of the trochanteric region and possible structural covariation between cortical bone distribution across the neck and site-specific trabecular properties of the arcuate bundle.


Asunto(s)
Fémur/anatomía & histología , Fósiles , Articulación de la Cadera , Hominidae/anatomía & histología , Adulto , Animales , Femenino , Fémur/fisiología , Marcha , Articulación de la Cadera/anatomía & histología , Articulación de la Cadera/fisiología , Hominidae/fisiología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Am J Phys Anthropol ; 176(3): 361-389, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33931848

RESUMEN

OBJECTIVES: The little known guenon Cercopithecus dryas has a controversial taxonomic history with some recognizing two taxa (C. dryas and C. salongo) instead of one. New adult specimens from the TL2 region of the central Congo Basin allow further assessment of C. dryas morphology and, along with CT scans of the juvenile holotype, provide ontogenetically stable comparisons across all C. dryas and "C. salongo" specimens for the first time. MATERIALS AND METHODS: The skins and skulls of two newly acquired C. dryas specimens, male YPM MAM 16890 and female YPM MAM 17066, were compared to previously described C. dryas and "C. salongo" specimens, along with a broader guenon comparative sample (cranial sample n = 146, dental sample n = 102). Qualitative and quantitative assessments were made on the basis of commonly noted pelage features as well as craniodental characters in the form of shape ratios and multivariate discriminant analyses. RESULTS: All C. dryas specimens, including the TL2 adults, are comparatively small in overall cranial size, have relatively small I1 s, and display tall molar cusps; these osteological characters, along with pelage features, are shared with known "C. salongo" specimens. Discriminant analyses of dental features separate C. dryas/salongo specimens from all other guenons. DISCUSSION: In addition to pelage-based evidence, direct osteological evidence suggests "C. salongo" is a junior synonym of C. dryas. Combined with molecular analyses suggesting C. dryas is most closely related to Chlorocebus spp., we emend the species diagnosis and support its transfer to Chlorocebus or possibly a new genus to reflect its distinctiveness.


Asunto(s)
Cercopithecinae , Diente , Animales , Congo , Femenino , Masculino , Filogenia , Cráneo/diagnóstico por imagen , Diente/diagnóstico por imagen
9.
Am J Phys Anthropol ; 173(2): 276-292, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32529656

RESUMEN

OBJECTIVES: The bony labyrinth of the inner ear has special relevance when tracking phenotypic evolution because it is often well preserved in fossil and modern primates. Here we track the evolution of the bony labyrinth of anthropoid primates during the Mio-Plio-Pleistocene-the time period that gave rise to the extant great apes and humans. MATERIALS AND METHODS: We use geometric morphometrics to analyze labyrinthine morphology in a wide range of extant and fossil anthropoids, including New World and Old World monkeys, apes, and humans; fossil taxa are represented by Aegyptopithecus, Microcolobus, Epipliopithecus, Nacholapithecus, Oreopithecus, Ardipithecus, Australopithecus, and Homo. RESULTS: Our results show that the morphology of the anthropoid bony labyrinth conveys a statistically significant phylogenetic signal especially at the family level. The bony labyrinthine morphology of anthropoids is also in part associated with size, but does not cluster by locomotor adaptations. The Miocene apes examined here, regardless of inferred locomotor behaviors, show labyrinthine morphologies distinct from modern great apes. DISCUSSION: Our results suggest that labyrinthine variation contains mixed signals and alternative explanations need to be explored, such as random genetic drift and neutral phenotypic evolution, as well as developmental constraints. The observed pattern in fossil and extant hominoids also suggests that an additional factor, for example, prenatal brain development, could have potentially had a larger role in the evolutionary modification of the bony labyrinth than hitherto recognized.


Asunto(s)
Oído Interno/anatomía & histología , Haplorrinos/anatomía & histología , Animales , Antropología Física , Evolución Biológica , Fósiles , Humanos , Filogenia
10.
J Hum Evol ; 135: 102666, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31499455

RESUMEN

Studies of the australopith (Australopithecus and Paranthropus) proximal femur have increasingly integrated information from the local arrangement of the cortical and cancellous bone to allow functional-biomechanical inferences on the locomotor behavioral patterns. In Australopithecus africanus and Paranthropus robustus, the cancellous bone organization at the center of the femoral head shows principal strut orientation similar to that of fossil and recent humans, which indicates that australopiths were human-like in many aspects of their bipedalism. However, by combining outer morphology with superoinferior asymmetry in cortical bone thickness at the base of neck and mid-neck, it has been suggested that, while adapted for terrestrial bipedality, australopiths displayed a slightly altered gait kinematics compared to Homo. We used techniques of 2D and 3D virtual imaging applied to an X-ray microtomographic record to assess cortical bone distribution along the entire femoral neck compartment in four upper femora from Swartkrans, South Africa (SK 82, SK 97, SK 3121, and SWT1/LB-2) and compared the results to the extant human and chimpanzee conditions. Our results support and extend previous evidence for more symmetric superior and inferior femoral neck cortical thicknesses in P. robustus than in modern humans and show that the differences are even greater than previously reported. However, P. robustus and humans still share a trend of lateral-to-medial decrease in asymmetry of the superior/inferior cortical thickness ratio, while this pattern is reversed in chimpanzees. We also identified two features uniquely characterizing P. robustus: an accentuated contrast between the relatively thicker anterior and the thinner posterior walls, and a more marked lateral-to-medial thinning of both cortices compared to extant humans and chimpanzees, which indicate wider interspecific differences among hominids in structural organization of the proximal femur than previously reported. It remains to be ascertained if, and to what extent, these features also characterize the femoral neck of Australopithecus.


Asunto(s)
Hueso Cortical/anatomía & histología , Cuello Femoral/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Fenómenos Biomecánicos , Femenino , Marcha , Hominidae/fisiología , Masculino , Sudáfrica
12.
J Hum Evol ; 123: 129-140, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30119896

RESUMEN

Sexual size dimorphism in the African fossil ape Proconsul nyanzae (18 million years ago, 18 Ma) has been previously documented. However, additional evidence for sexual dimorphism in Miocene hominoids can provide great insight into the history of extant hominoid mating systems. The present study focused on body mass (BM) sexual dimorphism in Nacholapithecus kerioi from the Middle Miocene (16-15 Ma) in Africa. Bootstrap analysis revealed that P. nyanzae BM sexual dimorphism was lower than that in Pan troglodytes, which exhibits moderate sexual dimorphism, as reported previously. The same simulation revealed that BM sexual dimorphism of N. kerioi was comparable with that in Gorilla spp.; i.e., the males were approximately twice as large as the females. High sexual dimorphism in extant apes is usually indicative of a polygynous social structure (gorilla) or solitary/fission-fusion social system (orangutan). However, because of the high proportion of adult males in this fossil assemblage, the magnitude of dimorphism inferred here cannot be associated with a gorilla-like polygynous or oranguran-like solitary/fission-fusion social structure, and may reflect either taphonomic bias, or some other social structure. Extant hominoids have a long evolutionary history owing to their deep branching, comprising only a few existing members of the original highly successful group. Therefore, it is not surprising that the mating systems of extant hominoids fail to provide fossil apes with a perfect "model". The mating systems of extinct hominoids may have been more diverse than those of extant apes.


Asunto(s)
Tamaño Corporal , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Femenino , Kenia , Masculino , Factores Sexuales
13.
Gen Comp Endocrinol ; 260: 58-66, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277418

RESUMEN

Epidemiological research has suggested that birth weights are correlated with adult leg lengths. However, the relationship between prenatal undernutrition (UN) and postnatal leg growth remains controversial. We investigated the effects of UN during early pregnancy on postnatal hindlimb growth and determined whether early embryonic malnutrition affects the functions of postnatal chondrocytes in rats. Undernourished Wistar dams were fed 40% of the daily intake of rats in the control groups from gestational days 5.5-11.5, and femurs, tibias, and trunks or spinal columns were morphologically measured at birth and at 16 weeks of age in control and undernourished offspring of both sexes. We evaluated cell proliferation and differentiation of cultured chondrocytes derived from neonatal tibias of female offspring and determined chondrocyte-related gene expression levels in neonatal epiphysis and embryonic limb buds. Tibial lengths of undernourished female, but not male, offspring were longer at birth and shorter at 16 weeks of age (p < .05) compared with those of control rats. In chondrocyte culture studies, stimulating effects of IGF-1 on cell proliferation (p < .01) were significantly decreased and levels of type II collagen were lower in female undernourished offspring (p < .05). These phenomena were accompanied by decreased expression levels of Col2a1 and Igf1r and increased expression levels of Fgfr3 (p < .05), which might be attributable to the decreased expression of specificity protein 1 (p < .05), a key transactivator of Col2a1 and Igf1r. In conclusion, UN stress during early pregnancy reduces postnatal tibial growth in female offspring by altering the function of chondrocytes, likely reflecting altered expression of gene transactivators.


Asunto(s)
Desarrollo Óseo/fisiología , Condrogénesis/fisiología , Desnutrición/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Tibia/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Femenino , Retardo del Crecimiento Fetal/etiología , Edad Gestacional , Masculino , Desnutrición/complicaciones , Embarazo , Ratas , Ratas Wistar
14.
J Hum Evol ; 94: 117-25, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27178463

RESUMEN

This study describes two new sacral specimens of Nacholapithecus kerioi, KNM-BG 42753I and KNM-BG 47687A, from the Aka Aiteputh Formation in Nachola, northern Kenya, excavated in 2002. They are of roughly equal size and are considered to belong to males. When scaled by body mass, the lumbosacral articular surface area of the better preserved specimen, KNM-BG 42753I, is smaller than that in Old World monkeys but similar to that in extant great apes and New World monkeys, as well as Proconsul nyanzae. The relatively narrow dimensions of the first sacral vertebral body in the transverse and sagittal planes are characteristics of N. kerioi and P. nyanzae and similar to those of extant great apes. In N. kerioi, lumbosacral surface area relative to body mass is small. This may simply be an extension of a trend from the previously reported small thoracolumbar vertebrae to the sacrum. ​The first sacral vertebrae of N. kerioi and Epipliopithecus vindobonensis have a higher craniocaudal vertebral body reduction (CVR; a higher CVR indicates a wider cranial width relative to a narrower caudal width), similar to that in Old World monkeys. Old World monkeys have a higher CVR, and usually have three sacral vertebrae, fewer than seen in extant great apes, which have a lower CVR and four to six (sometimes as many as eight) sacral vertebrae. New World monkeys have a lower CVR than Old World monkeys, but generally possess only three sacral vertebrae, and have a large caudal articular surface, which may be related, at least in the Atelidae, to the grasping ability of their tails. The possibility that N. kerioi had only three sacral vertebrae cannot be ruled out, because E. vindobonensis and Old World monkeys, with higher CVRs, have sacra consisting of three sacral vertebrae.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Sacro/anatomía & histología , Animales , Evolución Biológica , Kenia , Masculino
15.
J Hum Evol ; 94: 28-44, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27178456

RESUMEN

Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.


Asunto(s)
Distribución Animal , Evolución Biológica , Fósiles , Hominidae/fisiología , Animales , Ambiente , Geología , Kenia
16.
Am J Phys Anthropol ; 160(3): 469-82, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27000381

RESUMEN

OBJECTIVES: The carpal bones of the middle Miocene hominoid Nacholapithecus kerioi are described based on new materials. MATERIALS AND METHODS: The materials comprise a trapezoid, three capitates, two hamates, a centrale, a lunate, a triquetrum, and a pisiform, collected during the 2001 and 2002 field seasons from Nachola, Kenya. We also describe a pisiform recently assigned to the type specimen of N. kerioi, KNM-BG 35250. RESULTS: In the Nacholapithecus wrist, the ulnar styloid process articulates with both the triquetrum and pisiform, and the triquetrum facet on the hamate is relatively proximodistally oriented in dorsal view. The Nacholapithecus capitate possesses a moderate distopalmar hook-like process and separated radial articular facets for the trapezoid and the second metacarpal due to the carpometacarpal ligament attachment that is absent in the Proconsul capitate. DISCUSSION: The carpal anatomy of Nacholapithecus is similar to that of the early Miocene hominoid Proconsul. However, Nacholapithecus wrist anatomy appears to exhibit slightly more emphasized stability. Am J Phys Anthropol 160:469-482, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Huesos del Carpo/anatomía & histología , Hominidae/anatomía & histología , Animales , Antropología Física , Femenino , Fósiles , Kenia , Masculino
17.
J Anat ; 226(3): 258-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25601190

RESUMEN

Proximal femoral morphology and associated musculature are of special relevance to the understanding of hominoid locomotor systems. Knowledge of bone-muscle correspondence in extant hominoids forms an important comparative basis for inferring structure-function relationships in fossil hominids. However, there is still a lack of consensus on the correspondence between muscle attachment sites and surface morphology of the proximal femoral diaphysis in chimpanzees. Two alternative observations have been proposed regarding the attachment site positions of gluteus maximus (GM) and vastus lateralis (VL) relative to two prominent surface features of the proximal femoral diaphysis, the lateral spiral pilaster and the inferolateral fossa. Here, we use a combination of virtual and physical dissection in an attempt to identify the exact correspondence between muscle attachment sites and osteological features in two specimens of Pan troglodytes verus. The results show that the insertion of the GM tendon is consistently inferolateral to the lateral spiral pilaster, and that a part of the inferolateral fossa consistently forms the attachment site of the VL muscular fibers. While overall musculoskeletal features are similar in the two specimens examined in this study, GM and VL exhibit different degrees of segregation at the level of the inferolateral fossa. One specimen exhibited tendinous GM fibers penetrating the posteromedial part of VL, with both GM and VL inserting at the inferolateral fossa. In the other specimen, GM and VL were separated by a lateral intermuscular septum, which inserted into the inferolateral fossa. Variation of proximal femoral muscle attachments in chimpanzees is thus greater than previously thought. Our results indicate that a conspicuous osteological feature such as the inferolateral fossa does not necessarily correspond to the attachment site of a single muscle, but could serve as a boundary region between two muscles. Caution is thus warranted when interpreting the surface topography of muscle attachment sites and inferring locomotor functions.


Asunto(s)
Cabeza Femoral/anatomía & histología , Músculo Esquelético/anatomía & histología , Sistema Musculoesquelético/anatomía & histología , Pan troglodytes/anatomía & histología , Tendones/anatomía & histología , Animales , Nalgas/anatomía & histología , Femenino
18.
J Hum Evol ; 80: 17-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25577018

RESUMEN

Only two distal epiphyses of a radius and ulna are consensually attributed to the holotype skeleton of Proconsul heseloni, KNM-RU 2036. Here, we describe seven adult and immature distal antebrachial (radial and ulnar) epiphyses from two other individuals of P. heseloni from the Lower Miocene deposits of the Kaswanga Primate Site (KPS), Rusinga Island, Kenya. Because KNM-RU 2036 and KNM-KPS individuals III and VIII are conspecific and penecontemporaneous, their comparison provides the opportunity i) to characterize, for the first time, the morphological variation of the distal radioulnar joint in a Miocene ape, P. heseloni, and ii) to investigate the functional and evolutionary implications. Our results show that the distal antebrachial epiphyses of KNM-KPS III and VIII correspond to stages of bone maturation that are more advanced than those of KNM-RU 2036 (larger articulations and sharper articular borders and ligament attachments that are more developed). Accordingly, functional interpretations based solely on the skeleton of KNM-RU 2036 have involved an underestimation of the forearm rotation abilities of P. heseloni. In particular, the KPS fossils do not exhibit the primitive morphology of distal radioulnar syndesmosis, as those of KNM-RU 2036 and most nonhominoid primates, but rather the morphology of an incipient diarthrosis (as in extant lorisines and hominoids). The distal radioulnar diarthrosis permits more mobility and maintenance of the wrist during repeated and slow rotation of the forearms, which facilitates any form of quadrupedal locomotion on discontinuous and variably oriented supports. By providing the oldest evidence of a distal radioulnar joint in an early Miocene hominoid, the main conclusions of this study are consistent with the role of cautious climbing as a prerequisite step for the emergence of positional adaptations in apes.


Asunto(s)
Evolución Biológica , Fósiles , Primates/anatomía & histología , Radio (Anatomía)/anatomía & histología , Cúbito/anatomía & histología , Articulación de la Muñeca/anatomía & histología , Animales , Epífisis/anatomía & histología , Epífisis/fisiología , Extinción Biológica , Kenia , Locomoción , Análisis Multivariante , Primates/fisiología , Radio (Anatomía)/fisiología , Rango del Movimiento Articular , Cúbito/fisiología , Articulación de la Muñeca/fisiología
19.
J Hum Evol ; 88: 25-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26553816

RESUMEN

A new caudal thoracic and a new lumbar vertebra of Nacholapithecus kerioi, a middle Miocene hominoid from northern Kenya, are reported. The caudal thoracic vertebral body of N. kerioi has a rounded median ventral keel and its lateral sides are moderately concave. The lumbar vertebral body has an obvious median ventral keel. Based on a comparison of vertebral body cranial articular surface size between the caudal thoracic vertebrae in the present study and one discussed in a previous study (KNM-BG 35250BO, a diaphragmatic vertebra), N. kerioi has at least two post-diaphragmatic vertebrae (rib-bearing lumbar-type thoracic vertebrae), unlike extant hominoids. It also has thick, rounded, and moderately long metapophyses on the lumbar vertebra that project dorsolaterally. The spinous process bases of its caudal thoracic and lumbar vertebrae originate caudally between the postzygapophyses, as described previously in the KNM-BG 35250 holotype specimen. In other words, the postzygapophyses of N. kerioi do not project below the caudal border of the spinous processes, similar to those of extant great apes, and unlike small apes and monkeys, which have more caudally projecting postzygapophyses. Nacholapithecus kerioi has a craniocaudally expanded spinous process in relation to vertebral body length, also similar to extant great apes. Both these spinous process features of N. kerioi differ from those of Proconsul nyanzae. The caudal thoracic vertebra of N. kerioi has a caudally-directed spinous process, whose tip is tear-drop shaped. These features resemble those of extant apes. The morphology of the spinous process tips presumably helps vertebral stability by closely stacking adjacent spinous process tips as seen in extant hominoids. The morphology of the spinous process and postzygapophyses limits the intervertebral space and contributes to the stability of the functional lumbar region as seen in extant great apes, suggesting that antipronograde activity was included in the positional behavior of N. kerioi.


Asunto(s)
Hominidae/anatomía & histología , Vértebras Lumbares/anatomía & histología , Vértebras Torácicas/anatomía & histología , Animales , Kenia , Masculino
20.
Am J Phys Anthropol ; 158(2): 300-311, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26279451

RESUMEN

OBJECTIVE: Archaeological remains strongly suggest that the Holocene Japanese hunter-gatherers, the Jomon people, utilized terrestrial plants as their primary food source. However, carbon and nitrogen isotope analysis of bone collagen indicates that they primarily exploited marine resources. We hypothesize that this inconsistency stems from the route of protein synthesis and the different proportions of protein-derived carbon in tooth enamel versus bone collagen. Carbon isotope ratios from bone collagen reflect that of dietary protein and may provide a biased signal of diet, whereas isotope ratios from tooth enamel reflect the integrated diet from all macronutrients (carbohydrates, lipids, and proteins). METHODS: In order to evaluate the differences in inferred diet between the archaeological evidence and bone collagen isotope data, this study investigated carbon isotopes in Jomon tooth enamel from four coastal sites of the Middle to Late-Final Jomon period (5,000-2,300 years BP). RESULTS: Carbon isotope ratios of human teeth are as depleted as coeval terrestrial mammals, suggesting that C3 plants and terrestrial mammals were major dietary resources for the Jomon people. Dietary dependence on marine resources calculated from enamel was significantly lower than that calculated from bone collagen. The discrepancy in isotopic ratios between enamel and collagen and the nitrogen isotope ratio in collagen shows a negative correlation on individual and population levels, suggesting diets with variable proportions of terrestrial and marine resources. CONCLUSION: This study highlights the usefulness of coupling tooth enamel and bone collagen in carbon isotopic studies to reconstruct prehistoric human diet. Am J Phys Anthropol 158:300-311, 2015. © 2015 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA