Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Biochem ; 118(11): 3744-3755, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28379622

RESUMEN

Human amniotic fluid (AF)-derived mesenchymal stem cells (MSCs) sharing embryonic and adult stem cells characteristics are interesting by their multipotency and the usage for regenerative medicine. However, the usefulness of these cells for revealing the fetal diseases still needs to be assessed. Here, we have analyzed the epigenetic environment in terms of histone modifications in cultures of MSCs derived from AF of normal pregnancies and those with fetal abnormalities. The comparison of MSCs samples from AF of normal pregnancies (N) and fetus-affected (P) revealed two distinct cultures by their proliferation potential (P I and P II). Cell populations from N and P I samples had similar growth characteristics and exhibited quite similar cell surface (CD44, CD90, CD105) and stemness markers (Oct4, Nanog, Sox2, Rex1) profile that was distinct in slower growing and faster senescent P II cultures. Those differences were associated with changes in 5-Cyt DNA methylation and alterations in the expression levels of chromatin modifiers (DNMT1, HDAC1/2), activating (H4ac, H3K4me3), and repressive (H3K9me2/me3, H3K27me3) histone marks. MSCs isolated from AF with the genetic or multifactorial fetal diseases (P II samples) were enriched with repressive histone marks and H4K16ac, H3K9ac, H3K14ac modifications. This study indicates that differential epigenetic environment reflects a state of AF-MSCs dependently on their growth, phenotype, and stemness characteristics suggesting a way for better understanding of epigenetic regulatory mechanisms in AF-MSCs cultures in normal and diseased gestation conditions. J. Cell. Biochem. 118: 3744-3755, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Líquido Amniótico/metabolismo , Feto/metabolismo , Histonas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Segundo Trimestre del Embarazo/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Líquido Amniótico/citología , Células Cultivadas , Femenino , Feto/citología , Humanos , Células Madre Mesenquimatosas/citología , Embarazo
2.
BMC Cell Biol ; 15: 4, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24443786

RESUMEN

BACKGROUND: Epigenetic regulation is known to affect gene expression, and recent research shows that aberrant DNA methylation patterning and histone modifications may play a role in leukemogenesis. In order to highlight the co-operation of epigenetic mechanisms acting during the latter process it is important to clarify their potential as biomarkers of granulocytic differentiation. RESULTS: In this study we investigated epigenetic alterations in human hematopoietic cells at a distinct differentiation stages: primary hematopoietic CD34+ cells, KG1 myeloid leukemic cells, whose development is stopped at early stage of differentiation, and mature neutrophils. We focused on the epigenetic status of cell cycle regulating (p15, p16) and differentiation related (E-cadherin and RARß) genes. We found that the methylation level in promoter regions of some of these genes was considerably higher in KG1 cells and lower in CD34+ cells and human neutrophils. As examined and evaluated by computer-assisted methods, histone H3 and H4 modifications, i.e. H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc, were similar in CD34+ cells and human mature neutrophils. By contrast, in the KG1 cells, histone H3 and H4 modifications were quite high and increased after induction of granulocytic differentiation with the HDAC inhibitor phenyl butyrate. CONCLUSIONS: We found the methylation status of the examined gene promoters and histone modifications to be characteristically associated with the hematopoietic cell progenitor state, induced to differentiate myeloid KG1 cells and normal blood neutrophils. This could be achieved through epigenetic regulation of E-cadherin, p15, p16 and RARß genes expression caused by DNA methylation/demethylation, core and linker histones distribution in stem hematopoietic cells, induced to differentiation KG1 cells and mature human neutrophils, as well as the histone modifications H3K4Me3, H3K9Ac, H3K9Ac/S10Ph and H4 hyperAc in relation to hematopoietic cell differentiation to granulocyte. These findings also suggest them as potentially important biomarkers of hematopoietic cell granulocytic differentiation and could be valuable for leukemia induced differentiation therapy.


Asunto(s)
Antígenos CD34/metabolismo , Epigénesis Genética , Granulocitos/citología , Células Madre Hematopoyéticas/metabolismo , Células Mieloides/metabolismo , Neutrófilos/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Metilación de ADN , Granulocitos/metabolismo , Células Madre Hematopoyéticas/citología , Inhibidores de Histona Desacetilasas/farmacología , Histonas/genética , Histonas/metabolismo , Humanos , Células Mieloides/citología , Neutrófilos/citología , Fenilbutiratos/farmacología , Regiones Promotoras Genéticas , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
3.
Biomedicines ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009368

RESUMEN

Mass spectrometry-based proteomics have become a valued tool for conducting comprehensive analyses in amniotic fluid samples with pathologies. Our research interest is the finding and characterization of proteins related to normal vs. polyhydramnios (non-immune hydrops) pregnancy. Proteomic analysis was performed on proteins isolated from fresh amniotic fluid samples. Proteins were fractionated by 2DE using a different pI range (pI 3-11, pI 4-7) and analyzed with MALDI-TOF-MS. Furthermore, by using computational analysis, identified proteins in protein maps specific to normal vs. polyhydramnios pregnancy were compared and the quantities of expressed proteins were evaluated mathematically. Comparative analysis of proteome characteristic for the same polyhydramnios pregnancy fractionated by 2DE in different pI range (3-11 and 4-7) was performed and particular protein groups were evaluated for the quantification of changes within the same protein level. Proteins of normal and polyhydramnios pregnancies were fractionated by 2DE in pI range 3-11 and in pI range 4-7. Mass spectrometry analysis of proteins has revealed that the quantity changes of the main identified proteins in normal vs. polyhydramnios pregnancy could be assigned to immune response and inflammation proteins, cellular signaling and regulation proteins, metabolic proteins, etc. Specifically, we have identified and characterized proteins associated with heart function and circulatory system and proteins associated with abnormalities in prenatal medicine. The following are: serotransferrin, prothrombin, haptoglobin, transthyretin, alpha-1-antitrypsin, zinc-alpha-2-glycprotein, haptoglobin kininogen-1, hemopexin, clusterin, lumican, afamin, gelsolin. By using computational analysis, we demonstrated that some of these proteins increased a few times in pathological pregnancy. Computer assistance analysis of 2DE images suggested that, for the better isolation of the proteins' isoforms, those levels increased/decreased in normal vs. polyhydramnios pregnancy, and the fractionation of proteins in pI rage 3-11 and 4-7 could be substantial. We analyzed and identified by MS proteins specific for normal and polyhydramnios pregnancies. Identified protein levels increased and/or modification changed in case of non-immune hydrops fetus and in cases of cardiovascular, anemia, growth restriction, and metabolic disorders. Computational analysis for proteomic characterization empower to estimate the quantitative changes of proteins specific for normal vs. polyhydramnios pregnancies.

4.
Int J Stem Cells ; 12(2): 251-264, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31023001

RESUMEN

BACKGROUND AND OBJECTIVES: Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cardiovascular tissue engineering and cell therapy. The aim of this study is to verify angiotensin II and transforming growth factor-beta 1 (TGF-ß1) as potential cardiomyogenic differentiation inducers of AF-MSCs. METHODS AND RESULTS: AF-MSCs were obtained from amniocentesis samples from second-trimester pregnant women, isolated and characterized by the expression of cell surface markers (CD44, CD90, CD105 positive; CD34 negative) and pluripotency genes (OCT4, SOX2, NANOG, REX1). Cardiomyogenic differentiation was induced using different concentrations of angiotensin II and TGF-ß1. Successful initiation of differentiation was confirmed by alterations in cell morphology, upregulation of cardiac genes-markers NKX2-5, TBX5, GATA4, MYH6, TNNT2, DES and main cardiac ion channels genes (sodium, calcium, potassium) as determined by RT-qPCR. Western blot and immunofluorescence analysis revealed the increased expression of Connexin43, the main component of gap junctions, and Nkx2.5, the early cardiac transcription factor. Induced AF-MSCs switched their phenotype towards more energetic and started utilizing oxidative phosphorylation more than glycolysis for energy production as assessed using Agilent Seahorse XF analyzer. The immune analysis of chromatin-modifying enzymes DNMT1, HDAC1/2 and Polycomb repressive complex 1 and 2 (PRC1/2) proteins BMI1, EZH2 and SUZ12 as well as of modified histones H3 and H4 indicated global chromatin remodeling during the induced differentiation. CONCLUSIONS: Angiotensin II and TGF-ß1 are efficient cardiomyogenic inducers of human AF-MSCs; they initiate alterations at the gene and protein expression, metabolic and epigenetic levels in stem cells leading towards cardiomyocyte- like phenotype formation.

5.
Biomed Pharmacother ; 79: 62-70, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27044813

RESUMEN

Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes. Xenotransplantation was assessed by peripheral blood cells counts, the analysis of cell surface markers (CD15, CD33, CD45) and the expression of certain genes (PML-RAR alpha, CSF3, G-CSFR, WT1). The combined treatment prolonged APL xenograft mice survival and prevented tumour formation. The analysis of the expression of histone marks such as acetylation of H4, trimethylation of H3K4, H3K9 and H3K27 in APL xenograft mice tumours and tissues demonstrated tissue-specific changes in the level of histone modifications and the APL prognostic mark, WT1 protein. In summary, the effects of epigenetic agents used in this study were positive for leukemia prevention and linked to a modulation of the chromatin epigenetic environment in adult tissues of malignant organism.


Asunto(s)
Epigénesis Genética , Histonas/metabolismo , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Procesamiento Proteico-Postraduccional , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Leucemia Promielocítica Aguda/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Especificidad de Órganos/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Tretinoina/farmacología , Tretinoina/uso terapéutico , Proteínas WT1/metabolismo
6.
J Proteomics ; 75(11): 3291-303, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22507200

RESUMEN

Dystrobrevin is a dystrophin-related component of the dystrophin-associated protein complex (DAPC). Using alpha-dystrobrevin as indicator, we aimed to elucidate the interaction network of the DAPC with other proteins during apoptosis of promyelocytic HL-60 cells. The precise role(s) of DBs are not known, but we and others have shown that they play a role in intracellular signal transduction and cellular organization. Apoptosis was induced with etoposide in the absence or presence of Z-VAD to block caspase activity, and we then followed the cellular distribution of α-DB and its association with other proteins, using confocal imaging and cell fractions analyses after immune-precipitation with anti-α-DB and mass spectrometry. Confocal imaging revealed distinct spatial relocalizations of α-DB between the cell membrane, cytosol and nucleus after induction of apoptosis. The expression levels of the identified proteins were evaluated with computer-assisted image analysis of the gels. We thus identified associations with structural and transport proteins (tropomyosin, myosin), membrane (ADAM21, syntrophin), ER-Golgi (TGN51, eIF38) and nuclear (Lamins, ribonucleoprotein C1/C2) proteins. These results suggest that apoptosis-induction in HL-60 cells involves not only classical markers of apoptosis but also a network α-DB-associated proteins at the cell membrane, the cytoplasm and nucleus, affecting key cellular transport processes and cellular structure.


Asunto(s)
Apoptosis , Proteínas Asociadas a la Distrofina/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos Fitogénicos/farmacología , Etopósido/farmacología , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Oligopéptidos/farmacología
7.
Stem Cells Dev ; 19(7): 1081-93, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19824824

RESUMEN

Human dental pulp derived from exfoliated deciduous teeth has been described as a promising alternative source of multipotent stem cells. While these cells share certain similarities with mesenchymal stem-like cells (MSC) isolated from other tissues, basically they are still poorly characterized. In this study, for the first time, a proteomic map of abundantly expressed proteins in stromal cells derived from the dental pulp of human exfoliated deciduous teeth (SHED) was established. We also analyzed proteomic signatures of 2 clonal strains derived from SHEDs by single-cell cloning. The SHEDs were established from enzyme-disaggregated deciduous dental pulp from 6-year-old children. They had typical fibroblastoid morphology and high colony-forming efficiency index (16.4%). Cloning was performed at the second passage using limiting dilution in a 96-well plate (0.3 cell/well). Differentiation assessment revealed strong osteogenic but no adipogenic potential of the SHEDs in either clonal strain. The cells expressed characteristic antigens of MSC-like cells, including CD73, CD90, CD105, CD146, and did not express hematopoietic markers CD14, CD34, and CD45, as assessed with FACS analysis. For proteomic studies, cytosolic and nuclear proteins were analyzed with 2-dimensional gel electrophoresis (2-DE) and identified using matrix-assisted laser desorption/ionization (MALDI)-time of fl ight (TOF)-mass spectrometry (MS). All proteins were identified with high level of confidence (the lowest sequence coverage was 27%). Identification of highly expressed proteins in SHEDs revealed proteomic profiles very similar to that of MSC-like cells derived from other tissues. We also found a high degree of similarity between proteomic signatures of primary SHEDs and clonal cell strains. Thus, our data confirm a close resemblance between SHEDs and MSC-like cells from other tissues and may serve as starting point for creating-comprehensive proteomic maps.


Asunto(s)
Pulpa Dental/citología , Células Madre Multipotentes/química , Proteoma/análisis , Células del Estroma/química , Diente Primario/citología , Adipogénesis/fisiología , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Separación Celular/métodos , Células Cultivadas , Niño , Electroforesis en Gel Bidimensional , Citometría de Flujo , Humanos , Procesamiento de Imagen Asistido por Computador , Datos de Secuencia Molecular , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Osteogénesis/fisiología , Células del Estroma/citología , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA