Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 88(1): 49-59, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36480791

RESUMEN

The dimeric steroid SMR-3, featuring a 1,4-phenyldiboronic ester flanked by two pregnan-triol frameworks, was synthesized to explore the intramolecular dynamics of its central component. The structural data from single-crystal X-ray diffraction studies and the Hirshfeld analyses indicate small steric effects around the aromatic ring that should favor the intended motion. However, solid-state NMR data obtained through VT 13C{1H} CPMAS and 2H spin-echo experiments, using the deuterated analogue SMR-3D4, revealed that this component is rigid even at temperatures where other reported steroidal molecular rotors experience fast rotation (85 °C). A combination of classical molecular dynamics, molecular mechanics, and correlated ab initio calculations allowed us to distinguish the steric and electronic factors that restrict the potential motion in this compound. The experimental and computational data reveal that electronic components dominate the behavior and are responsible for the high rotational barrier in the SMR-3 crystal.


Asunto(s)
Imagen por Resonancia Magnética , Simulación de Dinámica Molecular , Rotación , Espectroscopía de Resonancia Magnética , Esteroides
2.
J Org Chem ; 86(5): 4112-4120, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33594882

RESUMEN

A series of hybrid dimers having orthogonal steroidal cores bridged by a chroman ketal moiety were obtained by Pd-catalyzed three-component reactions of steroid alkynols, 2-formylestradiol 17-monoacetate, and methyl orthoformate, via ortho-quinone methide intermediates. One of the obtained L-shaped scaffolds showed an inefficient crystal packing featuring large channels within the crystal array. Monte Carlo simulations indicate that these voids preferentially allocate n-hexane, opening the way to explore further applications of similar organic crystalline materials as selective hosts for small molecules.


Asunto(s)
Indolquinonas , Paladio , Catálisis , Esteroides
3.
Chem Sci ; 12(6): 2181-2188, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34163983

RESUMEN

This work describes the use of C-H⋯F-C contacts in the solid-state from the stator towards the rotator to fine-tune their internal motion, by constructing a set of interactions that generate close-fitting cavities in three supramolecular rotors 1-3I. The crystal structures of these rotors, determined by synchrotron radiation experiments at different temperatures, show the presence of such C-H⋯F-C contacts between extended carbazole stators featuring fluorinated phenyl rings and the 1,4-diazabicyclo[2.2.2]octane (DABCO) rotator. According to the 2H NMR results, using deuterated samples, and periodic density functional theory computations, the rotators experience fast angular displacements (preferentially 120° jumps) due to their low rotational activation energies (E a = 0.8-2.0 kcal mol-1). The higher rotational barrier for 1 (2.0 kcal mol-1) is associated with a larger number of weak C-H⋯F-C contacts generated by the stators. This strategy offers the possibility to explore the correlation among weak intermolecular forces, cavity shape, and internal dynamics, which has strong implications in the design of future fine-tuned amphidynamic crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA