Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(5): 796-809, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38749656

RESUMEN

Underrepresented populations are often excluded from genomic studies owing in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high-quality set of 4094 whole genomes from 80 populations in the HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also show substantial added value from this data set compared with the prior versions of the component resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared with previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality-control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Humanos , Proyecto Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Variación Genética , Genómica/métodos
4.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766146

RESUMEN

Genome-wide association studies have revealed that the genetic architecture of most complex traits is characterized by a large number of distinct effects scattered across the genome. Functional enrichment analyses of these results suggest that the associations for any given complex trait are not purely random. Thus, we set out to leverage the genetic association results from many traits with a view to identifying the set of modules, or latent factors, that mediate these associations. The identification of such modules may aid in disease classification as well as the elucidation of complex disease mechanisms. We propose a method, Genetic Unmixing by Independent Decomposition (GUIDE), to estimate a set of statistically independent latent factors that best express the patterns of association across many traits. The resulting latent factors not only have desirable mathematical properties, such as sparsity and a higher variance explained (for both traits and variants), but are also able to single out and prioritize key biological features or pathophysiological mechanisms underlying a given trait or disease. Moreover, we show that these latent factors can index biological pathways as well as epidemiological and environmental influences that compose the genetic architecture of complex traits.

5.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260295

RESUMEN

The Variant Call Format (VCF) is widely used in genome sequencing but scales poorly. For instance, we estimate a 150,000 genome VCF would occupy 900 TiB, making it both costly and complicated to produce and analyze. The issue stems from VCF's requirement to densely represent both reference-genotypes and allele-indexed arrays. These requirements lead to unnecessary data duplication and, ultimately, very large files. To address these challenges, we introduce the Scalable Variant Call Representation (SVCR). This representation reduces file sizes by ensuring they scale linearly with samples. SVCR achieves this by adopting reference blocks from the Genomic Variant Call Format (GVCF) and employing local allele indices. SVCR is also lossless and mergeable, allowing for N+1 and N+K incremental joint-calling. We present two implementations of SVCR: SVCR-VCF, which encodes SVCR in VCF format, and VDS, which uses Hail's native format. Our experiments confirm the linear scalability of SVCR-VCF and VDS, in contrast to the super-linear growth seen with standard VCF files. We also discuss the VDS Combiner, a scalable, open-source tool for producing a VDS from GVCFs and unique features of VDS which enable rapid data analysis. SVCR, and VDS in particular, ensure the scientific community can generate, analyze, and disseminate genetics datasets with millions of samples.

6.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798318

RESUMEN

Understanding the genetic basis of gene expression can help us understand the molecular underpinnings of human traits and disease. Expression quantitative trait locus (eQTL) mapping can help in studying this relationship but have been shown to be very cell-type specific, motivating the use of single-cell RNA sequencing and single-cell eQTLs to obtain a more granular view of genetic regulation. Current methods for single-cell eQTL mapping either rely on the "pseudobulk" approach and traditional pipelines for bulk transcriptomics or do not scale well to large datasets. Here, we propose SAIGE-QTL, a robust and scalable tool that can directly map eQTLs using single-cell profiles without needing aggregation at the pseudobulk level. Additionally, SAIGE-QTL allows for testing the effects of less frequent/rare genetic variation through set-based tests, which is traditionally excluded from eQTL mapping studies. We evaluate the performance of SAIGE-QTL on both real and simulated data and demonstrate the improved power for eQTL mapping over existing pipelines.

7.
Cell Genom ; 4(7): 100602, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38944039

RESUMEN

The phenotypic impact of compound heterozygous (CH) variation has not been investigated at the population scale. We phased rare variants (MAF ∼0.001%) in the UK Biobank (UKBB) exome-sequencing data to characterize recessive effects in 175,587 individuals across 311 common diseases. A total of 6.5% of individuals carry putatively damaging CH variants, 90% of which are only identifiable upon phasing rare variants (MAF < 0.38%). We identify six recessive gene-trait associations (p < 1.68 × 10-7) after accounting for relatedness, polygenicity, nearby common variants, and rare variant burden. Of these, just one is discovered when considering homozygosity alone. Using longitudinal health records, we additionally identify and replicate a novel association between bi-allelic variation in ATP2C2 and an earlier age at onset of chronic obstructive pulmonary disease (COPD) (p < 3.58 × 10-8). Genetic phase contributes to disease risk for gene-trait pairs: ATP2C2-COPD (p = 0.000238), FLG-asthma (p = 0.00205), and USH2A-visual impairment (p = 0.0084). We demonstrate the power of phasing large-scale genetic cohorts to discover phenome-wide consequences of compound heterozygosity.


Asunto(s)
Bancos de Muestras Biológicas , Exoma , Heterocigoto , Fenotipo , Humanos , Reino Unido/epidemiología , Exoma/genética , Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/genética , Femenino , Masculino , Proteínas Filagrina , Estudio de Asociación del Genoma Completo , Asma/genética , Biobanco del Reino Unido
8.
Nat Hum Behav ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965376

RESUMEN

Data within biobanks capture broad yet detailed indices of human variation, but biobank-wide insights can be difficult to extract due to complexity and scale. Here, using large-scale factor analysis, we distill hundreds of variables (diagnoses, assessments and survey items) into 35 latent constructs, using data from unrelated individuals with predominantly estimated European genetic ancestry in UK Biobank. These factors recapitulate known disease classifications, disentangle elements of socioeconomic status, highlight the relevance of psychiatric constructs to health and improve measurement of pro-health behaviours. We go on to demonstrate the power of this approach to clarify genetic signal, enhance discovery and identify associations between underlying phenotypic structure and health outcomes. In building a deeper understanding of ways in which constructs such as socioeconomic status, trauma, or physical activity are structured in the dataset, we emphasize the importance of considering the interwoven nature of the human phenome when evaluating public health patterns.

9.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645052

RESUMEN

Genomic scientists have long been promised cheaper DNA sequencing, but deep whole genomes are still costly, especially when considered for large cohorts in population-level studies. More affordable options include microarrays + imputation, whole exome sequencing (WES), or low-pass whole genome sequencing (WGS) + imputation. WES + array + imputation has recently been shown to yield 99% of association signals detected by WGS. However, a method free from ascertainment biases of arrays or the need for merging different data types that still benefits from deeper exome coverage to enhance novel coding variant detection does not exist. We developed a new, combined, "Blended Genome Exome" (BGE) in which a whole genome library is generated, an aliquot of that genome is amplified by PCR, the exome regions are selected and enriched, and the genome and exome libraries are combined back into a single tube for sequencing (33% exome, 67% genome). This creates a single CRAM with a low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This BGE can be used for imputing common variants throughout the genome as well as for calling rare coding variants. We tested this new method and observed >99% r 2 concordance between imputed BGE data and existing 30x WGS data for exome and genome variants. BGE can serve as a useful and cost-efficient alternative sequencing product for genomic researchers, requiring ten-fold less sequencing compared to 30x WGS without the need for complicated harmonization of array and sequencing data.

10.
Nat Commun ; 15(1): 5007, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866767

RESUMEN

Polygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases. We integrate PGS associations from seven studies in four countries (N = 1,197,129) with disease incidences from the Global Burden of Disease. PGS has a significant sex-specific effect for asthma, hip osteoarthritis, gout, coronary heart disease and type 2 diabetes (T2D), with all but T2D exhibiting a larger effect in men. PGS has a larger effect in younger individuals for 13 diseases, with effects decreasing linearly with age. We show for breast cancer that, relative to individuals in the bottom 20% of polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. Our framework increases the generalizability of results from biobank studies and the accuracy of absolute risk estimates by appropriately accounting for age- and sex-specific PGS effects. Our results highlight the potential of PGS as a screening tool which may assist in the early prevention of common diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Herencia Multifactorial , Humanos , Masculino , Femenino , Herencia Multifactorial/genética , Incidencia , Persona de Mediana Edad , Adulto , Anciano , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo , Medición de Riesgo/métodos , Carga Global de Enfermedades , Factores Sexuales , Factores de Edad
11.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645134

RESUMEN

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA