RESUMEN
Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapiaRESUMEN
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Asunto(s)
Glicopéptidos/sangre , Glicoproteínas/sangre , Informática/métodos , Proteoma/análisis , Proteómica/métodos , Investigadores/estadística & datos numéricos , Programas Informáticos , Glicosilación , Humanos , Proteoma/metabolismo , Espectrometría de Masas en TándemRESUMEN
IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.
Asunto(s)
Virus de la Influenza A , Gripe Humana , Pulmón , Receptores de Superficie Celular , Animales , Humanos , Proteínas Portadoras/metabolismo , Glicoconjugados/metabolismo , Virus de la Influenza A/metabolismo , Pulmón/virología , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Azúcares/metabolismo , Gripe Aviar/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismoRESUMEN
Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.
Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animales , Ácidos Siálicos/química , Polisacáridos/química , Monosacáridos , CatalogaciónRESUMEN
MOTIVATION: The 'glycoEnzymes' include a set of proteins having related enzymatic, metabolic, transport, structural and cofactor functions. Currently, there is no established ontology to describe glycoEnzyme properties and to relate them to glycan biosynthesis pathways. RESULTS: We present GlycoEnzOnto, an ontology describing 403 human glycoEnzymes curated along 139 glycosylation pathways, 134 molecular functions and 22 cellular compartments. The pathways described regulate nucleotide-sugar metabolism, glycosyl-substrate/donor transport, glycan biosynthesis and degradation. The role of each enzyme in the glycosylation initiation, elongation/branching and capping/termination phases is described. IUPAC linear strings present systematic human/machine-readable descriptions of individual reaction steps and enable automated knowledge-based curation of biochemical networks. All GlycoEnzOnto knowledge is integrated with the Gene Ontology biological processes. GlycoEnzOnto enables improved transcript overrepresentation analyses and glycosylation pathway identification compared to other available schema, e.g. KEGG and Reactome. Overall, GlycoEnzOnto represents a holistic glycoinformatics resource for systems-level analyses. AVAILABILITY AND IMPLEMENTATION: https://github.com/neel-lab/GlycoEnzOnto. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Bases del Conocimiento , Polisacáridos , Humanos , Ontología de Genes , GlicosilaciónRESUMEN
We recently discovered that human neutrophils express immunomodulatory glycoproteins carrying unusual and highly truncated paucimannosidic N-glycans (Man1-3GlcNAc2Fuc0-1), but their biosynthesis remains elusive. Guided by the well-characterized truncation pathway in invertebrates and plants in which the N-acetyl-ß-D-hexosaminidase (Hex) isoenzymes catalyze paucimannosidic protein (PMP) formation, we here set out to test if the homologous human Hex α and ß subunits encoded by HEXA and HEXB drive a similar truncation pathway in human neutrophils. To this end, we performed quantitative glycomics and glycoproteomics of several CRISPR-Cas9-edited Hex-disrupted neutrophil-like HL-60 mutants (HEXA-KO and HEXB-KO) and matching unedited cell lines. Hex disruption was validated using next-generation sequencing, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics and Hex activity assays. Excitingly, all Hex-disrupted mutants displayed significantly reduced levels of paucimannosylation, particularly Man2-3GlcNAc2Fuc1, relative to unedited HL-60 suggesting that both HEXA and HEXB contribute to PMP formation via a hitherto unexplored truncation pathway in neutrophils. Quantitative N-glycomics indeed demonstrated reduced utilization of a putative noncanonical truncation pathway in favor of the canonical elongation pathway in all Hex-disrupted mutants relative to unedited controls. Quantitative glycoproteomics recapitulated the truncation-to-elongation switch in all Hex-disrupted mutants and showed a greater switch for N-glycoproteins cotrafficking with Hex to the azurophilic granules of neutrophils such as myeloperoxidase. Finally, we supported the Hex-PMP relationship by documenting that primary neutrophils isolated from an early-onset Sandhoff disease patient (HEXB-/-) displayed dramatically reduced paucimannosylation relative to neutrophils from an age-matched unaffected donor. We conclude that both human Hex α and ß mediate PMP formation via a putative noncanonical truncation pathway in neutrophils.
Asunto(s)
Hexosaminidasas , Neutrófilos , Hexosaminidasa A , Hexosaminidasa B , Humanos , beta-N-Acetilhexosaminidasas/genéticaRESUMEN
Glycan biosynthesis on cell surface proteins and lipids is orchestrated by different classes of enzymes and proteins including the following: i. glycosyltransferases that add saccharides; ii. glycosidases that trim glycans; iii. conserved oligomeric golgi complex members that regulate intracellular transport; iv. enzymes aiding the biosynthesis of sugar-nucleotides; and v. sulfotransferases. This manuscript describes a pooled "glycoGene CRISPR" lentiviral library that targets 347 human genes involved in the above processes. Approximately 10 single-guide RNA (sgRNA) are included against each glycogene, with the putative editing site spanning the length of the target. A data analysis scheme is presented in order to determine glycosylation pathways regulating biological processes. As proof of principle, forward genetic screen results are presented to identify penetrating glycogenes that regulate the binding of P-/E-selectin, anti-sialyl Lewis-X monoclonal antibody HECA-452 and selected lectins (phaseolus vulgaris leucoagglutinin, vicia villosa lectin, peanut agglutinin) to HL-60 promyelocytic cells. Besides validating previously established biology, the study identifies three enzymes, PAPSS1, SLC35B2 and TPST2, as key molecules regulating sulfation of the major P-selectin glycoprotein ligand-1 in leukocytes. Approximately 80-90% of the sgRNA used in this study displayed high editing efficiency, and the CRISPR library picked up entire gene sets regulating specific biosynthetic pathways rather than only isolated genes. These data suggest that the glycoGene CRISPR library contains high-efficiency sgRNA. Further, this resource could be useful for the rapid screening of glycosylation-related genes and pathways that control lectin recognition in a variety of contexts.
Asunto(s)
Sistemas CRISPR-Cas/genética , Lectinas/metabolismo , Polisacáridos/biosíntesis , Sitios de Unión , Biblioteca de Genes , Glicosilación , Células HL-60 , Humanos , Lectinas/químicaRESUMEN
Factor H (FH) is a critical regulator of the alternative complement pathway and its deficiency or mutation underlie kidney diseases such as dense deposit disease. Since vascular dysfunction is an important facet of kidney disease, maintaining optimal function of the lining endothelial cells is important for vascular health. To investigate the molecular mechanisms that are regulated by FH in endothelial cells, FH deficient and sufficient mouse kidney endothelial cell cultures were established. Endothelial FH deficiency resulted in cytoskeletal remodeling, increased angiogenic potential, loss of cellular layer integrity and increased cell proliferation. FH reconstitution prevented these FH-dependent proliferative changes. Respiratory flux analysis showed reduced basal mitochondrial respiration, ATP production and maximal respiratory capacity in FH deficient endothelial cells, while proton leak remained unaltered. Similar changes were observed in FH deficient human glomerular endothelial cells indicating the translational potential of these studies. Gene expression analysis revealed that the FH-dependent gene changes in mouse kidney endothelial cells include significant upregulation of genes involved in inflammation and the complement system. The transcription factor nuclear factor-kB, that regulates many biological processes, was translocated from the cytoplasm to the nucleus in the absence of FH. Thus, our studies show the functional relevance of intrinsic FH in kidney endothelial cells in man and mouse.
Asunto(s)
Factor H de Complemento , Enfermedades Renales , Animales , Factor H de Complemento/genética , Vía Alternativa del Complemento , Células Endoteliales , Humanos , Riñón , RatonesRESUMEN
Exome and deep sequencing of cells treated with a panel of lentiviral guide RNA demonstrate that both on- and off-target editing proceed in a time-dependent manner. Thus, methods to temporally control Cas9 activity would be beneficial. To address this need, we describe a "self-inactivating CRISPR (SiC)" system consisting of a single guide RNA that deactivates the Streptococcus pyogenes Cas9 nuclease in a doxycycline-dependent manner. This enables defined, temporal control of Cas9 activity in any cell type and also in vivo. Results show that SiC may enable a reduction in off-target editing, with less effect on on-target editing rates. This tool facilitates diverse applications including (1) the timed regulation of genetic knockouts in hard-to-transfect cells using lentivirus, including human leukocytes for the identification of glycogenes regulating leukocyte-endothelial cell adhesion; (2) genome-wide lentiviral sgRNA (single guide RNA) library applications where Cas9 activity is ablated after allowing pre-determined editing times. Thus, stable knockout cell pools are created for functional screens; and (3) temporal control of Cas9-mediated editing of myeloid and lymphoid cells in vivo, both in mouse peripheral blood and bone marrow. Overall, SiC enables temporal control of gene editing and may be applied in diverse application including studies that aim to reduce off-target genome editing.
Asunto(s)
Sistemas CRISPR-Cas/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Doxiciclina/farmacología , Edición Génica/métodos , Animales , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Activación Enzimática/efectos de los fármacos , Técnicas de Inactivación de Genes , Genoma Humano , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lentivirus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Guía de Kinetoplastida/genética , Transducción GenéticaRESUMEN
Glycans have been shown to play a key role in many biological processes, such as signal transduction, immunogenicity, and disease progression. Among the various glycosylation modifications found on cell surfaces and in biomolecules, sialylation is especially important, because sialic acids are typically found at the terminus of glycans and have unique negatively charged moieties associated with cellular and molecular interactions. Sialic acids are also crucial for glycosylated biopharmaceutics, where they promote stability and activity. In this regard, heterogenous sialylation may produce variability in efficacy and limit therapeutic applications. Homogenous sialylation may be achieved through cellular and molecular engineering, both of which have gained traction in recent years. In this paper, we describe the engineering of intracellular glycosylation pathways through targeted disruption and the introduction of carbohydrate active enzyme genes. The focus of this review is on sialic acid-related genes and efforts to achieve homogenous, humanlike sialylation in model hosts. We also discuss the molecular engineering of sialyltransferases and their application in chemoenzymatic sialylation and sialic acid visualization on cell surfaces. The integration of these complementary engineering strategies will be useful for glycoscience to explore the biological significance of sialic acids on cell surfaces as well as the future development of advanced biopharmaceuticals.
Asunto(s)
Polisacáridos/química , Ácidos Siálicos/química , Sialiltransferasas/química , Animales , Glicosilación , Humanos , Sialiltransferasas/metabolismoRESUMEN
Glycosylation is a common posttranslational modification, and glycan biosynthesis is regulated by a set of glycogenes. The role of transcription factors (TFs) in regulating the glycogenes and related glycosylation pathways is largely unknown. In this work, we performed data mining of TF-glycogene relationships from the Cistrome Cancer database (DB), which integrates chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq data to constitute regulatory relationships. In total, we observed 22,654 potentially significant TF-glycogene relationships, which include interactions involving 526 unique TFs and 341 glycogenes that span 29 the Cancer Genome Atlas (TCGA) cancer types. Here, TF-glycogene interactions appeared in clusters or so-called communities, suggesting that changes in single TF expression during both health and disease may affect multiple carbohydrate structures. Upon applying the Fisher's exact test along with glycogene pathway classification, we identified TFs that may specifically regulate the biosynthesis of individual glycan types. Integration with Reactome DB knowledge provided an avenue to relate cell-signaling pathways to TFs and cellular glycosylation state. Whereas analysis results are presented for all 29 cancer types, specific focus is placed on human luminal and basal breast cancer disease progression. Overall, the article presents a computational approach to describe TF-glycogene relationships, the starting point for experimental system-wide validation.
RESUMEN
SUMMARY: This manuscript describes an open-source program, DrawGlycan-SNFG (version 2), that accepts IUPAC (International Union of Pure & Applied Chemist)-condensed inputs to render Symbol Nomenclature For Glycans (SNFG) drawings. A wide range of local and global options enable display of various glycan/peptide modifications including bond breakages, adducts, repeat structures, ambiguous identifications, etc. These facilities make DrawGlycan-SNFG ideal for integration into various glycoinformatics software, including glycomics and glycoproteomics mass spectrometry applications. As a demonstration of such usage, we incorporated DrawGlycan-SNFG into gpAnnotate, a standalone application to score and annotate individual MS/MS glycopeptide spectrum in different fragmentation modes. AVAILABILITY AND IMPLEMENTATION: DrawGlycan-SNFG and gpAnnotate are platform independent. While originally coded using MATLAB, compiled packages are also provided to enable DrawGlycan-SNFG implementation in Python and Java. All programs are available from https://virtualglycome.org/drawglycan; https://virtualglycome.org/gpAnnotate. SUPPLEMENTARY INFORMATION: Supplementary Material are available at Bioinformatics online.
RESUMEN
Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in both literature and code.
RESUMEN
The Symbol Nomenclature for Glycans (SNFG) is a community-curated standard for the depiction of monosaccharides and complex glycans using various colored-coded, geometric shapes, along with defined text additions. It is hosted by the National Center for Biotechnology Information (NCBI) at the NCBI-Glycans Page (www.ncbi.nlm.nih.gov/glycans/snfg.html). Several changes have been made to the SNFG page in the past year to update the rules for depicting glycans using the SNFG, to include more examples of use, particularly for non-mammalian organisms, and to provide guidelines for the depiction of ambiguous glycan structures. This Glycoforum article summarizes these recent changes.
Asunto(s)
National Library of Medicine (U.S.)/organización & administración , Polisacáridos/química , Terminología como Asunto , Animales , Internet , Polisacáridos/clasificación , Estados UnidosRESUMEN
BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) produce higher levels of truncated O-glycan structures (such as Tn and sTn) than normal pancreata. Dysregulated activity of core 1 synthase glycoprotein-N-acetylgalactosamine 3-ß-galactosyltransferase 1 (C1GALT1) leads to increased expression of these truncated O-glycans. We investigated whether and how truncated O-glycans contributes to the development and progression of PDAC using mice with disruption of C1galt1. METHODS: We crossed C1galt1 floxed mice (C1galt1loxP/loxP) with KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) mice to create KPCC mice. Growth and progression of pancreatic tumors were compared between KPC and KPCC mice; pancreatic tissues were collected and analyzed by immunohistochemistry; immunofluorescence; and Sirius red, alcian blue, and lectin staining. We used the CRISPR/Cas9 system to disrupt C1GALT1 in human PDAC cells (T3M4 and CD18/HPAF) and levels of O-glycans were analyzed by lectin blotting, mass spectrometry, and lectin pulldown assay. Orthotopic studies and RNA sequencing analyses were performed with control and C1GALT1 knockout PDAC cells. C1GALT1 expression was analyzed in well-differentiated (n = 36) and poorly differentiated (n = 23) PDAC samples by immunohistochemistry. RESULTS: KPCC mice had significantly shorter survival times (median 102 days) than KPC mice (median 200 days) and developed early pancreatic intraepithelial neoplasias at 3 weeks, PDAC at 5 weeks, and metastasis at 10 weeks compared with KPC mice. Pancreatic tumors that developed in KPCC mice were more aggressive (more invasive and metastases) than those in KPC mice, had a decreased amount of stroma, and had increased production of Tn. Poorly differentiated PDAC specimens had significantly lower levels of C1GALT1 than well-differentiated PDACs. Human PDAC cells with knockout of C1GALT1 had aberrant glycosylation of MUC16 compared with control cells and increased expression of genes that regulate tumorigenesis and metastasis. CONCLUSIONS: In studies of KPC mice with disruption of C1galt1, we found that loss of C1galt1 promotes development of aggressive PDACs and increased metastasis. Knockout of C1galt1 leads to increased tumorigenicity and truncation of O-glycosylation on MUC16, which could contribute to increased aggressiveness.
Asunto(s)
Adenocarcinoma/etiología , Galactosiltransferasas/fisiología , Neoplasias Pancreáticas/etiología , Adenocarcinoma/secundario , Animales , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático , Proliferación Celular , Galactosiltransferasas/genética , Glicosilación , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patologíaRESUMEN
Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MSn proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MSn data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MSn spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data.
Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteómica/métodos , Línea Celular Tumoral , Glicosilación , Humanos , Masculino , Procesamiento Proteico-Postraduccional , Programas Informáticos , Espectrometría de Masas en TándemRESUMEN
Left ventricular assist devices (LVAD) provide cardiac support for patients with end-stage heart disease as either bridge or destination therapy, and have significantly improved the survival of these patients. Whereas earlier models were designed to mimic the human heart by producing a pulsatile flow in parallel with the patient's heart, newer devices, which are smaller and more durable, provide continuous blood flow along an axial path using an internal rotor in the blood. However, device-related hemostatic complications remain common and have negatively affected patients' recovery and quality of life. In most patients, the von Willebrand factor (VWF) rapidly loses large multimers and binds poorly to platelets and subendothelial collagen upon LVAD implantation, leading to the term acquired von Willebrand syndrome (AVWS). These changes in VWF structure and adhesive activity recover quickly upon LVAD explantation and are not observed in patients with heart transplant. The VWF defects are believed to be caused by excessive cleavage of large VWF multimers by the metalloprotease ADAMTS-13 in an LVAD-driven circulation. However, evidence that this mechanism could be the primary cause for the loss of large VWF multimers and LVAD-associated bleeding remains circumstantial. This review discusses changes in VWF reactivity found in patients on LVAD support. It specifically focuses on impacts of LVAD-related mechanical stress on VWF structural stability and adhesive reactivity in exploring multiple causes of AVWS and LVAD-associated hemostatic complications.
Asunto(s)
Corazón Auxiliar/efectos adversos , Disfunción Ventricular Izquierda/cirugía , Enfermedades de von Willebrand/etiología , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón/efectos adversos , Trasplante de Corazón/instrumentación , Hemostasis/fisiología , Humanos , Trombosis/etiología , Disfunción Ventricular Izquierda/fisiopatología , Factor de von Willebrand/fisiologíaRESUMEN
Glycan or carbohydrate structures can be pictorially represented using symbolic nomenclatures. The symbol nomenclature for glycans (SNFG) contains 67 different monosaccharides represented using various colors and geometric shapes. A simple tool to convert International Union of Pure and Applied Chemistry (IUPAC) format text to SNFG will be useful for sketching glycans and glycopeptides. Such code can also enable the development of more sophisticated applications, where the visual representation of carbohydrate structures is necessary. To address this need, the current manuscript describes DrawGlycan-SNFG, a freely available, platform-independent, open-source tool. It allows: i. the display of glycans and glycopeptides from IUPAC-condensed text inputs and ii. the depiction of glycan and glycopeptide fragments. The online version of this program is provided with a user-friendly web interface at www.virtualglycome.org/DrawGlycan. Downloadable, stand-alone GUI (Graphical User Interface) version and the program source code are also available from this repository. DrawGlycan-SNFG will be useful for experimentalists looking for a ready to use, simple program for sketching carbohydrates and for software developers interested in incorporating SNFG into their program suite.
Asunto(s)
Glicopéptidos/clasificación , Monosacáridos/clasificación , Polisacáridos/clasificación , Programas Informáticos , Carbohidratos/química , Carbohidratos/clasificación , Glicopéptidos/química , Internet , Monosacáridos/química , Polisacáridos/químicaRESUMEN
The precise glycosyltransferase enzymes that mediate selectin-ligand biosynthesis in human leukocytes are unknown. This knowledge is important because selectin-mediated cell tethering and rolling is a critical component of both normal immune response and various vascular disorders. We evaluated the role of 3 α(2,3)sialyltransferases, ST3Gal-3, -4, and -6, which act on the type II N-Acetyllactosamine structure (Galß1,4GlcNAc) to create sialyl Lewis-X (sLe(X)) and related sialofucosylated glycans on human leukocytes of myeloid lineage. These genes were either silenced using lentiviral short hairpin RNA (shRNA) or functionally ablated using the clustered regularly interspaced short palindromic repeat/Cas9 technology. The results show that ST3Gal-4, but not ST3Gal-3 or -6, is the major sialyltransferase regulating the biosynthesis of E-, P-, and L-selectin ligands in humans. Reduction in ST3Gal-4 activity lowered cell-surface HECA-452 epitope expression by 75% to 95%. Glycomics profiling of knockouts demonstrate an almost complete loss of the sLe(X) epitope on both leukocyte N- and O-glycans. In cell-adhesion studies, ST3Gal-4 knockdown/knockout cells displayed 90% to 100% reduction in tethering and rolling density on all selectins. ST3Gal-4 silencing in neutrophils derived from human CD34(+) hematopoietic stem cells also resulted in 80% to 90% reduction in cell adhesion to all selectins. Overall, a single sialyltransferase regulates selectin-ligand biosynthesis in human leukocytes, unlike mice where multiple enzymes contribute to this function.