Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203338

RESUMEN

Medicinal chemistry is constantly searching for new approaches to develop more effective and targeted therapeutic molecules. The design of peptidomimetics is a promising emerging strategy that is aimed at developing peptides that mimic or modulate the biological activity of proteins. Among these, stapled peptides stand out for their unique ability to stabilize highly frequent helical motifs, but they have failed to be systematically reported. Here, we exploit chemically diverse helix-inducing i, i + 4 constraints-lactam, hydrocarbon, triazole, double triazole and thioether-on two distinct short sequences derived from the N-terminal peptidase domain of hACE2 upon structural characterization and in silico alanine scan. Our overall objective was to provide a sequence-independent comparison of α-helix-inducing staples using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. We identified a 9-mer lactam stapled peptide derived from the hACE2 sequence (His34-Gln42) capable of reaching its maximal helicity of 55% with antiviral activity in bioreporter- and pseudovirus-based inhibition assays. To the best of our knowledge, this study is the first comprehensive investigation comparing several cyclization methods with the goal of generating stapled peptides and correlating their secondary structures with PPI inhibitions using a highly topical model system (i.e., the interaction of SARS-CoV-2 Spike RBD with hACE2).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ciclización , Lactamas , Péptidos/farmacología , Triazoles
2.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38400125

RESUMEN

This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.

3.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675751

RESUMEN

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

4.
Emerg Microbes Infect ; 12(1): e2169198, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36655944

RESUMEN

During a pandemic, effective vaccines are typically in short supply, particularly at onset intervals when the wave is accelerating. We conducted an observational, retrospective analysis of aggregated data from all patients who tested positive for SARS-CoV-2 during the waves caused by the Delta and Omicron variants, stratified based on their known previous infection and vaccination status, throughout the University of Texas Medical Branch (UTMB) network. Next, the immunity statuses within each medical parameter were compared to naïve individuals for the effective decrease of occurrence. Lastly, we conducted studies using mice and pre-pandemic human samples for IgG responses to viral nucleocapsid compared to spike protein toward showing a functional component supportive of the medical data results in relation to the immunity types. During the Delta and Omicron waves, both infection-induced and hybrid immunities were associated with a trend of equal or greater decrease of occurrence than vaccine-induced immunity in hospitalizations, intensive care unit admissions, and deaths in comparison to those without pre-existing immunity, with hybrid immunity often trending with the greatest decrease. Compared to individuals without pre-existing immunity, those vaccinated against SARS-CoV-2 had a significantly reduced incidence of COVID-19, as well as all subsequent medical parameters. Though vaccination best reduces health risks associated with initial infection toward acquiring immunity, our findings suggest infection-induced immunity is as or more effective than vaccination in reducing the severity of reinfection from the Delta or Omicron variants, which should inform public health response at pandemic onset, particularly when triaging towards the allotment of in-demand vaccinations.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , Reinfección , SARS-CoV-2 , Estudios Retrospectivos , Hospitalización
5.
NPJ Vaccines ; 7(1): 172, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36543794

RESUMEN

In recent years, tattooing technology has shown promising results toward evaluating vaccines in both animal models and humans. However, this technology has some limitations due to variability of experimental evaluations or operator procedures. The current study evaluated a device (intradermal oscillating needle array injection device: IONAID) capable of microinjecting a controlled dose of any aqueous vaccine into the intradermal space. IONAID-mediated administration of a DNA-based vaccine encoding the glycoprotein (GP) from the Ebola virus resulted in superior T- and B-cell responses with IONAID when compared to single intramuscular (IM) or intradermal (ID) injection in mice. Moreover, humoral immune responses, induced after IONAID vaccination, were significantly higher to those obtained with traditional passive DNA tattooing in guinea pigs and rabbits. This device was well tolerated and safe during HIV vaccine delivery in non-human primates (NHPs), while inducing robust immune responses. In summary, this study shows that the IONAID device improves vaccine performance, which could be beneficial to the animal and human health, and importantly, provide a dose-sparing approach (e.g., monkeypox vaccine).

6.
Retrovirology ; 6: 100, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19886997

RESUMEN

Proteins of the TRIM5 family, such as TRIM5alpha and the related TRIMCyp, are cytoplasmic factors that can inhibit incoming retroviruses. This type of restriction requires a direct interaction between TRIM5 proteins and capsid proteins that are part of mature, intact retroviral cores. In such cores, capsids are arranged as hexameric units. Multiple lines of evidence imply that TRIM5 proteins themselves interact with retroviral cores as multimers. Accordingly, stabilization by crosslinking agents has revealed that TRIM5alpha and TRIMCyp are present as trimers in mammalian cells. We report here that TRIM5 proteins seem to form dimers, trimers, hexamers and multimers of higher complexity in mammalian cells. The hexameric form in particular seems to be the most abundant multimer. Multimerization did not involve disulfide bridges and was not affected by infection with restriction-sensitive viruses or by treatment with the known TRIM5 inhibitors arsenic trioxide, MG132 and cyclosporine A. We conclude that TRIM5 multimerization results from more than one protein-protein interface and that it is seemingly not triggered by contact with retroviral cores.


Asunto(s)
Multimerización de Proteína , Proteínas/metabolismo , Animales , Aotidae , Trióxido de Arsénico , Arsenicales/farmacología , Línea Celular , Ciclosporina/farmacología , Inhibidores Enzimáticos/farmacología , Leupeptinas/farmacología , Macaca mulatta , Ratones , Óxidos/farmacología , Ubiquitina-Proteína Ligasas
7.
Heliyon ; 2(1): e00056, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27441239

RESUMEN

TRIM5α from the rhesus macaque (TRIM5αRh) is a restriction factor that shows strong activity against HIV-1. TRIM5αRh binds specifically to HIV-1 capsid (CA) through its B30.2/PRYSPRY domain shortly after entry of the virus into the cytoplasm. Recently, three putative SUMO interacting motifs (SIMs) have been identified in the PRYSPRY domain of human and macaque TRIM5α. However, structural modeling of this domain suggested that two of them were buried in the hydrophobic core of the protein, implying that interaction with SUMO was implausible, while the third one was not relevant to restriction. In light of these results, we re-analyzed the TRIM5αRh PRYSPRY sequence and identified an additional putative SIM ((435)VIIC(438)) which we named SIM4. This motif is exposed at the surface of the PRYSPRY domain, allowing potential interactions with SUMO or SUMOylated proteins. Introducing a double mutation in SIM4 (V435K, I436K) did not alter stability, unlike mutations in SIM1. SIM4-mutated TRIM5αRh failed to bind HIV-1CA and lost the ability to restrict this virus. Accordingly, SIM4 undergoes significant variation among primates and substituting this motif with naturally occurring SIM4 variants affected HIV-1 restriction by TRIM5αRh, suggesting a direct role in capsid recognition. Interestingly, SIM4-mutated TRIM5αRh also failed to activate NF-κB and AP-1-mediated transcription. Although there is no direct evidence that SIM4 is involved in direct interaction with SUMO or a SUMOylated protein, mutating this motif strongly reduced co-localization of TRIM5αRh with SUMO-1 and with PML, a SUMOylated nuclear protein. In conclusion, this new putative SIM is crucial for both direct interaction with incoming capsids and for NF-κB/AP-1 signaling. We speculate that the latter function is mediated by interactions of SIM4 with a SUMOylated protein involved in the NF-κB/AP-1 signaling pathways.

8.
Hum Gene Ther ; 26(10): 664-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26076730

RESUMEN

Current HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear. TRIM5α is an interferon-stimulated restriction factor that can intercept incoming retroviruses within one hour of cytosolic entry and potently inhibit the infectivity of restriction-sensitive viruses. The human TRIM5α (TRIM5αhu) generally does not efficiently target HIV-1, but point mutations in its capsid-binding domain can confer anti-HIV-1 activity. Although the mechanisms by which TRIM5αhu mutants inhibit HIV-1 are relatively well understood, their characterization as potential transgenes for gene therapy is lacking. Additionally, previous reports of general immune activation by overexpression of TRIM5α have hindered its broad adoption as a potential transgene. Here we demonstrate the ability of the R332G-R335G TRIM5αhu mutant to efficiently restrict highly divergent HIV-1 strains, including Group O, as well as clinical isolates bearing cytotoxic T lymphocyte escape mutations. R332G-R335G TRIM5αhu efficiently protected human lymphocytes against HIV-1 infection, even when expressed at relatively low levels following lentiviral transduction. Most importantly, under these conditions Rhesus macaque TRIM5α (TRIM5αRh) and TRIM5αhu (wild-type or mutated) had no major effects on the NF-κB pathway. Transgenic TRIM5α did not modulate the kinetics of IκBα, JunB, and TNFAIP3 expression following TNF-α treatment. Finally, we show that human lymphocytes expressing R332G-R335G TRIM5αhu have clear survival advantages over unmodified parental cells in the presence of pathogenic, replication-competent HIV-1. These results support the relevance of R332G-R335G and other mutants of TRIM5αhu as candidate effectors for HIV-1 gene therapy.


Asunto(s)
Proteínas Portadoras/genética , Terapia Genética , Infecciones por VIH/genética , VIH-1/genética , Proteínas Mutantes/genética , Animales , Factores de Restricción Antivirales , Proteínas Portadoras/uso terapéutico , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos , Lentivirus/genética , Linfocitos/patología , Linfocitos/virología , Macaca mulatta , Proteínas Mutantes/uso terapéutico , Mutación , Unión Proteica , Transgenes , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
9.
Virus Res ; 184: 30-8, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24583231

RESUMEN

TRIM5α is a type I interferon-stimulated anti-retroviral restriction factor expressed in most primates and homologous proteins are expressed in other mammals. Through its C-terminal PRYSPRY (B30.2) domain, TRIM5α binds to incoming and intact post-fusion retroviral cores in the cytoplasm. Following this direct interaction, the retroviral capsid core is destabilized and progression of the virus life cycle is interrupted. Specific recognition of its viral target by TRIM5α also triggers the induction of an antiviral state involving the activation of transcription factors NF-κB- and AP-1. In addition to PRYSPRY, several other TRIM5α domains are important for anti-retroviral function, including a RING zinc-binding motif. This domain has "E3" ubiquitin ligase activity and is involved in both the direct inhibition of incoming retroviruses and innate immune activation. A highly conserved sumoylation consensus site is present between the RING motif and the N-terminal extremity of TRIM5α. No clear role in restriction has been mapped to this sumoylation site, and no sumoylated forms of TRIM5α have been observed. Here we confirm that mutating the putatively sumoylated lysine (K10) of the Rhesus macaque TRIM5α (TRIM5αRh) to an arginine has only a small effect on restriction. However, we show that the mutation significantly decreases the TRIM5α-induced generation of free K63-linked ubiquitin chains, an intermediate in the activation of innate immunity pathways. Accordingly, K10R decreases TRIM5α-mediated activation of both NF-κB and AP-1. Concomitantly, we find that K10R causes a large increase in the levels of ubiquitylated TRIM5α. Finally, treatment with the nuclear export inhibitor leptomycin B shows that K10R enhances the nuclear localization of TRIM5αRh, while at the same time reducing its level of association with nuclear SUMO bodies. In conclusion, the TRIM5α sumoylation site appears to modulate the E3 ubiquitin ligase activities of the adjacent RING domain, promoting K63-linked ubiquitin chains at the expense of auto-ubiquitylation which is probably K48-linked. Consistently, we find this sumoylation site to be important for innate immune activation by TRIM5α. In addition, lysine 10 regulates TRIM5α nuclear shuttling and nuclear localization, which may also be related to its role in innate immunity activation.


Asunto(s)
Proteínas/inmunología , Proteínas/metabolismo , Retroviridae/inmunología , Sustitución de Aminoácidos , Animales , Arginina/genética , Arginina/metabolismo , Lisina/genética , Lisina/metabolismo , Macaca mulatta , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Proteínas Mutantes/metabolismo , FN-kappa B/metabolismo , Proteínas/genética , Sumoilación , Factor de Transcripción AP-1/metabolismo , Ubiquitina-Proteína Ligasas
10.
Virology ; 405(2): 414-23, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20619429

RESUMEN

In human cells, endogenous TRIM5alpha strongly inhibits N-tropic strains of murine leukemia virus (N-MLV) but does not target the closely related B-MLV. We have used a shRNA-based loss-of-function screen to isolate factors other than TRIM5alpha involved in the restriction of N-MLV. In one of the isolated clones, the shRNA expressed was found to target the murine double minute-2 mRNA. Knocking down MDM2 increased N-MLV and EIAV infection of human cells by 2- to 5-fold while having little effect on B-MLV. Similarly, knocking down MDM2 in African green monkey cells diminished the restriction of both N-MLV and HIV-1. Dual knockdown experiments showed that MDM2 was involved in the restriction mediated by TRIM5alpha. Moreover, MDM2 knockdown decreased the sensitivity of N-MLV infection to treatment with MG132 and As(2)O(3), two known TRIM5alpha pharmacological inhibitors. Altogether, our data suggest that MDM2 is a general but nonessential modulator of TRIM5alpha-mediated antiretroviral functions.


Asunto(s)
Proteínas Portadoras/metabolismo , Virus de la Anemia Infecciosa Equina/patogenicidad , Virus de la Leucemia Murina/patogenicidad , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , Animales , Factores de Restricción Antivirales , Trióxido de Arsénico , Arsenicales/farmacología , Proteínas Portadoras/genética , Línea Celular , VIH-1/genética , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Virus de la Anemia Infecciosa Equina/genética , Virus de la Anemia Infecciosa Equina/metabolismo , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/metabolismo , Leupeptinas/farmacología , Ratones , Óxidos/farmacología , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA