Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Appl Clin Med Phys ; 20(1): 308-320, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30508315

RESUMEN

PURPOSE: To evaluate organ doses in routine and low-dose chest computed tomography (CT) protocols using an experimental methodology. To compare experimental results with results obtained by the National Cancer Institute dosimetry system for CT (NCICT) organ dose calculator. To address the differences on organ dose measurements using tube current modulation (TCM) and fixed tube current protocols. METHODS: An experimental approach to evaluate organ doses in pediatric and adult anthropomorphic phantoms using thermoluminescent dosimeters (TLDs) was employed in this study. Several analyses were performed in order to establish the best way to achieve the main results in this investigation. The protocols used in this study were selected after an analysis of patient data collected from the Institute of Radiology of the School of Medicine of the University of São Paulo (InRad). The image quality was evaluated by a radiologist from this institution. Six chest adult protocols and four chest pediatric protocols were evaluated. Lung doses were evaluated for the adult phantom and lung and thyroid doses were evaluated for the pediatric phantom. The irradiations were performed using both a GE and a Philips CT scanner. Finally, organ doses measured with dosimeters were compared with Monte Carlo simulations performed with NCICT. RESULTS: After analyzing the data collected from all CT examinations performed during a period of 3 yr, the authors identified that adult and pediatric chest CT are among the most applied protocol in patients in that clinical institution, demonstrating the relevance on evaluating organ doses due to these examinations. With regards to the scan parameters adopted, the authors identified that using 80 kV instead of 120 kV for a pediatric chest routine CT, with TCM in both situations, can lead up to a 28.7% decrease on the absorbed dose. Moreover, in comparison to the standard adult protocol, which is performed with fixed mAs, TCM, and ultra low-dose protocols resulted in dose reductions of up to 35.0% and 90.0%, respectively. Finally, the percent differences found between experimental and Monte Carlo simulated organ doses were within a 20% interval. CONCLUSIONS: The results obtained in this study measured the impact on the absorbed dose in routine chest CT by changing several scan parameters while the image quality could be potentially preserved.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo , Fantasmas de Imagen , Dosímetros de Radiación , Radiografía Torácica/métodos , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/métodos , Adulto , Niño , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
2.
Med Phys ; 49(1): 201-218, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34800303

RESUMEN

PURPOSE: A Monte Carlo (MC) modeling of single axial and helical CT scan modes has been developed to compute single and accumulated dose distributions. The radiation emission characteristics of an MDCT scanner has been modeled and used to evaluate the dose deposition in infinitely long head and body PMMA phantoms. The simulated accumulated dose distributions determined the approach to equilibrium function, H(L). From these H ( L ) curves, dose-related information was calculated for different head and body clinical protocols. METHODS: The PENELOPE/penEasy package has been used to model the single axial and helical procedures and the radiation transport of photons and electrons in the phantoms. The bowtie filters, heel effect, focal-spot angle, and fan-beam geometry were incorporated. Head and body protocols with different pitch values were modeled for x-ray spectra corresponding to 80, 100, 120, and 140 kV. The analytical formulation for the single dose distributions and experimental measurements of single and accumulated dose distributions were employed to validate the MC results. The experimental dose distributions were measured with OSLDs and a thimble ion chamber inserted into PMMA phantoms. Also, the experimental values of the C T D I 100 along the center and peripheral axes of the CTDI phantom served to calibrate the simulated single and accumulated dose distributions. RESULTS: The match of the simulated dose distributions with the reference data supports the correct modeling of the heel effect and the radiation transport in the phantom material reflected in the tails of the dose distributions. The validation of the x-ray source model was done comparing the CTDI ratios between simulated, measured and CTDosimetry data. The average difference of these ratios for head and body protocols between the simulated and measured data was in the range of 13-17% and between simulated and CTDosimetry data varied 10-13%. The distributions of simulated doses and those measured with the thimble ion chamber are compatible within 3%. In this study, it was demonstrated that the efficiencies of the C T D I 100 measurements in head phantoms with nT = 20 mm and 120 kV are 80.6% and 87.8% at central and peripheral axes, respectively. In the body phantoms with n T = 40 mm and 120 kV, the efficiencies are 56.5% and 86.2% at central and peripheral axes, respectively. In general terms, the clinical parameters such as pitch, beam intensity, and voltage affect the Deq values with the increase of the pitch decreasing the Deq and the beam intensity and the voltage increasing its value. The H(L) function does not change with the pitch values, but depends on the phantom axis (central or peripheral). CONCLUSIONS: The computation of the pitch-equilibrium dose product, D ̂ eq , evidenced the limitations of the C T D I 100 method to determine the dose delivered by a CT scanner. Therefore, quantities derived from the C T D I 100 propagate this limitation. The developed MC model shows excellent compatibility with both measurements and literature quantities defined by AAPM Reports 111 and 200. These results demonstrate the robustness and versatility of the proposed modeling method.


Asunto(s)
Benchmarking , Radiometría , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X
3.
Health Phys ; 92(1): 24-32, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17164596

RESUMEN

In spite of the recent advances in the experimental detection of x-ray spectra, theoretical or semi-empirical approaches for determining realistic x-ray spectra in the range of diagnostic energies are important tools for planning experiments, estimating radiation doses in patients, and formulating radiation shielding models. The TBC model is one of the most useful approaches since it allows for straightforward computer implementation, and it is able to accurately reproduce the spectra generated by tungsten target x-ray tubes. However, as originally presented, the TBC model fails in situations where the determination of x-ray spectra produced by an arbitrary waveform or the calculation of realistic values of air kerma for a specific x-ray system is desired. In the present work, the authors revisited the assumptions used in the original paper published by . They proposed a complementary formulation for taking into account the waveform and the representation of the calculated spectra in a dosimetric quantity. The performance of the proposed model was evaluated by comparing values of air kerma and first and second half value layers from calculated and measured spectra by using different voltages and filtrations. For the output, the difference between experimental and calculated data was better then 5.2%. First and second half value layers presented differences of 23.8% and 25.5% in the worst case. The performance of the model in accurately calculating these data was better for lower voltage values. Comparisons were also performed with spectral data measured using a CZT detector. Another test was performed by the evaluation of the model when considering a waveform distinct of a constant potential. In all cases the model results can be considered as a good representation of the measured data. The results from the modifications to the TBC model introduced in the present work reinforce the value of the TBC model for application of quantitative evaluations in radiation physics.


Asunto(s)
Calibración/normas , Modelos Químicos , Radiometría/instrumentación , Radiometría/normas , Tungsteno/química , Tungsteno/efectos de la radiación , Simulación por Computador , Dosis de Radiación , Radiometría/métodos , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA