Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(11): 6318-6325, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32133468

RESUMEN

The unique physical and chemical properties of ß12-borophene stem from the coexistence of the Dirac and triplet fermions. The metallic phase of ß12-borophene transitions to the semiconducting one when it is subjected to a perpendicular electric field or bias voltage. In this work, with the aid of a five-band tight-binding Hamiltonian, the Green's function approach and the Kubo-Greenwood formalism, the electronic thermal conductivity (ETC) of the semiconducting phase of ß12-borophene is studied. Two homogeneous (H) and inversion symmetric (IS) models are considered depending on the interaction of the substrate and boron atoms. In addition, due to the anisotropic structure of ß12-borophene, the swapping effect of bias poles is addressed. First of all, we find the pristine ETCIS < ETCH independent of the temperature. Furthermore, a decrease of 74.45% (80.62%) is observed for ETCH (ETCIS) when strong positive bias voltages are applied, while this is 25.2% (47.48%) when applying strong negative bias voltages. Moreover, the shoulder temperature of both models increases (fluctuates) with the positive (negative) bias voltage. Our numerical results pave the way for setting up future experimental thermoelectric devices in order to achieve the highest performance.

2.
Phys Chem Chem Phys ; 22(20): 11637-11643, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32406452

RESUMEN

In this paper, detailed investigations of the electronic and optical properties of a Janus SnSSe monolayer under a biaxial strain and electric field using ab initio methods are presented. Our calculations indicate that the Janus SnSSe monolayer is a semiconductor with an indirect band gap larger/lower than that of the SnSe2/SnS2 monolayer. To obtain accurate estimates of the band gap, both Perdew-Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals have been used and the effect of spin-orbit coupling has also been included. While the influence of the electric field on the electronic and optical properties of the Janus SnSSe monolayer is quite weak, biaxial strain plays a key role in controlling these properties. The Janus SnSSe monolayer has a wide absorption spectrum, from visible light to the ultraviolet region. At equilibrium, the maximum absorption coefficient of the monolayer is up to 11.152 × 104 cm-1 in the ultraviolet region and it can be increased by strain engineering. With high absorption intensity in the visible light area and being able to tune the absorbance by strain, the Janus SnSSe monolayer becomes a promising material for applications in optoelectronic devices.

3.
RSC Adv ; 10(5): 2967-2974, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35496107

RESUMEN

Vertical heterostructures from two or more than two two-dimensional materials are recently considered as an effective tool for tuning the electronic properties of materials and for designing future high-performance nanodevices. Here, using first principles calculations, we propose a GeC/C2N van der Waals heterostructure and investigate its electronic and optical properties. We demonstrate that the intrinsic electronic properties of both GeC and C2N monolayers are quite preserved in GeC/C2N HTS owing to the weak forces. At the equilibrium configuration, GeC/C2N HTS forms the type-II band alignment with an indirect band gap of 0.42 eV, which can be considered to improve the effective separation of electrons and holes. Besides, GeC/C2N vdW-HTS exhibits strong absorption in both visible and near ultra-violet regions with an intensity of 105 cm-1. The electronic properties of GeC/C2N HTS can be tuned by applying an electric field and vertical strains. The semiconductor to metal transition can be achieved in GeC/C2N HTS in the case when the positive electric field of +0.3 V Å-1 or the tensile vertical strain of -0.9 Å is applied. These findings demonstrate that GeC/C2N HTS can be used to design future high-performance multifunctional devices.

4.
RSC Adv ; 10(73): 44785-44792, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516240

RESUMEN

In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin-orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin-orbit splitting energy of 90 meV has been found in the valence band. However, the spin-orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm-1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.

5.
Appl Environ Microbiol ; 72(1): 908-13, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16391133

RESUMEN

The heat resistance of Campylobacter jejuni strains AR6 and L51 and the heat resistance of Campylobacter coli strains DR4 and L6 were measured over the temperature range from 50 to 60 degrees C by two methods. Isothermal measurements yielded D55 values in the range from 4.6 to 6.6 min and z values in the range from 5.5 to 6.3 degrees C. Dynamic measurements using differential scanning calorimetry (DSC) during heating at a rate of 10 degrees C/min yielded D55 values of 2.5 min and 3.4 min and z values of 6.3 degrees C and 6.5 degrees C for AR6 and DR4, respectively. Both dynamic and isothermal methods yielded mean D55 values that were substantially greater than those reported previously (0.75 to 0.95 min). DSC analysis of each strain during heating at a rate of 10 degrees C/min yielded a complex series of overlapping endothermic peaks, which were assigned to cell wall lipids, ribosomes, and DNA. Measurement of the decline in the numbers of CFU in calorimetric samples as they were heated showed that the maximum rate of cell death occurred at 56 to 57 degrees C, which is close to the value predicted mathematically from the isothermal measurements of D and z (61 degrees C). Both estimates were very close to the peak m1 values, 60 to 62 degrees C, which were tentatively identified with unfolding of the 30S ribosome subunit, showing that cell death in C. jejuni and C. coli coincided with unfolding of the most thermally labile regions of the ribosome. Other measurements indicated that several essential proteins, including the alpha and beta subunits of RNA polymerase, might also unfold at the same time and contribute to cell death.


Asunto(s)
Campylobacter coli/crecimiento & desarrollo , Campylobacter jejuni/crecimiento & desarrollo , Calor , Animales , Rastreo Diferencial de Calorimetría , Campylobacter coli/química , Campylobacter jejuni/química , Pared Celular/química , Recuento de Colonia Microbiana , ADN Bacteriano/análisis , Lípidos/análisis , Ribosomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA