Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2312866120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988461

RESUMEN

All phase transitions can be categorized into two different types: continuous and discontinuous phase transitions. Discontinuous phase transitions are normally accompanied with significant structural changes, and nearly all of them have the kinetic pathway of nucleation and growth, if the system does not suffer from glassy dynamics. Here, in a system of barrier-controlled reactive particles, we find that the discontinuous freezing transition of a nonequilibrium hyperuniform fluid into an absorbing state does not have the kinetic pathway of nucleation and growth, and the transition is triggered by long-wavelength fluctuations. The transition rate decreases with increasing the system size, which suggests that the metastable hyperuniform fluid could be kinetically stable in an infinitely large system. This challenges the common understanding of metastability in discontinuous phase transitions. Moreover, we find that the "metastable yet kinetically stable" hyperuniform fluid features a scaling in the structure factor [Formula: see text] in 2D, which is the third dynamic hyperuniform state in addition to the critical hyperuniform state with [Formula: see text] and the nonequilibrium hyperuniform fluid with [Formula: see text].

2.
Phys Rev Lett ; 132(11): 118202, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563948

RESUMEN

Using a statistical mechanical model and numerical simulations, we provide the design principle for the bridging strength (ξ) and linker density (ρ) dependent superselectivity in linker-mediated multivalent nanoparticle adsorption. When the bridges are insufficient, the formation of multiple bridges leads to both ξ- and ρ-dependent superselectivity. When the bridges are excessive, the system becomes insensitive to bridging strength due to entropy-induced self-saturation and shows a superselective desorption with respect to the linker density. Counterintuitively, lower linker density or stronger bridging strength enhances the superselectivity. These findings help the understanding of relevant biological processes and open up opportunities for applications in biosensing, drug delivery, and programmable self-assembly.

3.
Phys Rev Lett ; 133(4): 048101, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121423

RESUMEN

Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.

4.
Phys Rev Lett ; 132(1): 018202, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242650

RESUMEN

A simple geometric constraint often leads to novel, complex crystalline phases distinct from the bulk. Using thin-film charge colloidal crystals, a model system with tunable interactions, we study the effects of geometric constraints. Through a combination of experiments and simulations, we systematically explore phase reentrances and solid deformation modes concerning geometrical confinement strength, identifying two distinct categories of phase reentrances below a characteristic layer number, N_{c}: one for bcc bulk-stable and another for fcc bulk-stable systems. We further verify that the dominant thermodynamic origin is the nonmonotonic dependence of solids' free energy on the degree of spatial confinement. Moreover, we discover transitions in solid deformation modes between interface-energy and bulk-energy dominance: below a specific layer number, N_{k}, geometric constraints generate unique soft deformation modes adaptive to confinement. These findings on the N-dependent thermodynamic and kinetic behaviors offer fresh insights into understanding and manipulating thin-film crystal structures.

5.
Soft Matter ; 20(5): 1114-1119, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38224143

RESUMEN

Kirigami-inspired designs can enable self-folding three-dimensional materials from flat, two-dimensional sheets. Hierarchical designs of connected levels increase the diversity of possible target structures, yet they can lead to longer folding times in the presence of fluctuations. Here, we study the effect of rotational coupling between levels on the self-folding of two-level kirigami designs driven by thermal noise in a fluid. Naturally present due to hydrodynamic resistance, we find that this coupling parameter can significantly impact a structure's self-folding pathway, thus enabling us to assess the quality of a kirigami design and the possibility for its optimization in terms of its folding rate and yield.

6.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38341787

RESUMEN

Materials incorporating covalent adaptive networks (CAN), e.g., vitrimers, have received significant scientific attention due to their distinctive attributes of self-healing and stimuli-responsive properties. Different from direct crosslinked systems, bivalent and multivalent systems require a bond swap algorithm that respects detailed balance, considering the multiple equilibria in the system. Here, we propose a simple and robust algorithm to handle bond swap in multivalent and multi-species CAN systems. By including a bias term in the acceptance of Monte Carlo moves, we eliminate the imbalance from the bond swap site selection and multivalency effects, ensuring the detailed balance for all species in the system.

7.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37606337

RESUMEN

Randomly organizing hyperuniform fluid induced by reciprocal activation is a non-equilibrium fluid with vanishing density fluctuations at large length scales such as crystals. Here, we extend this new state of matter to a closed manifold, namely a spherical surface. We find that the random organization on a spherical surface behaves similar to that in two dimensional Euclidean space, and the absorbing transition on a sphere also belongs to the conserved directed percolation universality class. Moreover, the reciprocal activation can also induce a non-equilibrium hyperuniform fluid on a sphere. The spherical structure factor at the absorbing transition and the non-equilibrium hyperuniform fluid phases are scaled as S(l → 0) ∼ (l/R)0.45 and S(l → 0) ∼ l(l + 1)/R2, respectively, which are both hyperuniform according to the definition of hyperuniformity on a sphere with l, the wave number, and R, the radius of the spherical surface. We also consider the impact of inertia in realistic hyperuniform fluids, and it is found only by adding an extra length-scale, above which hyperuniform scaling appears. Our finding suggests a new method for creating non-equilibrium hyperuniform fluids on closed manifolds to avoid boundary effects.

8.
Proc Natl Acad Sci U S A ; 117(44): 27111-27115, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087578

RESUMEN

Recently developed linker-mediated vitrimers based on metathesis of dioxaborolanes with various commercially available polymers have shown both good processability and outstanding performance, such as mechanical, thermal, and chemical resistance, suggesting new ways of processing cross-linked polymers in industry, of which the design principle remains unknown [M. Röttger et al., Science 356, 62-65 (2017)]. Here we formulate a theoretical framework to elucidate the phase behavior of the linker-mediated vitrimers, in which entropy plays a governing role. We find that, with increasing the linker concentration, vitrimers undergo a reentrant gel-sol transition, which explains a recent experiment [S. Wu, H. Yang, S. Huang, Q. Chen, Macromolecules 53, 1180-1190 (2020)]. More intriguingly, at the low temperature limit, the linker concentration still determines the cross-linking degree of the vitrimers, which originates from the competition between the conformational entropy of polymers and the translational entropy of linkers. Our theoretical predictions agree quantitatively with computer simulations, and offer guidelines in understanding and controlling the properties of this newly developed vitrimer system.

9.
Phys Rev Lett ; 129(12): 125501, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179189

RESUMEN

Recently, a new type of duality was reported in some deformable mechanical networks that exhibit Kramers-like degeneracy in phononic spectrum at the self-dual point. In this work, we clarify the origin of this duality and propose a design principle of 2D self-dual structures with arbitrary complexity. We find that this duality originates from the partial central inversion (PCI) symmetry of the hinge, which belongs to a more general end-fixed scaling transformation. This symmetry gives the structure an extra degree of freedom without modifying its dynamics. This results in dynamic isomers, i.e., dissimilar 2D mechanical structures, either periodic or aperiodic, having identical dynamic modes, based on which we demonstrate a new type of wave guide without reflection or loss. Moreover, the PCI symmetry allows us to design various 2D periodic isostatic networks with hinge duality. At last, by further studying a 2D nonmechanical magnonic system, we show that the duality and the associated hidden symmetry should exist in a broad range of Hamiltonian systems.

10.
BMC Cancer ; 22(1): 382, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397524

RESUMEN

BACKGROUND: The accuracy of CT and tumour markers in screening lung cancer needs to be improved. Computer-aided diagnosis has been reported to effectively improve the diagnostic accuracy of imaging data, and recent studies have shown that circulating genetically abnormal cell (CAC) has the potential to become a novel marker of lung cancer. The purpose of this research is explore new ways of lung cancer screening. METHODS: From May 2020 to April 2021, patients with pulmonary nodules who had received CAC examination within one week before surgery or biopsy at First Affiliated Hospital of Zhengzhou University were enrolled. CAC counts, CT scan images, serum tumour marker (CEA, CYFRA21-1, NSE) levels and demographic characteristics of the patients were collected for analysis. CT were uploaded to the Pulmonary Nodules Artificial Intelligence Diagnostic System (PNAIDS) to assess the malignancy probability of nodules. We compared diagnosis based on PNAIDS, CAC, Mayo Clinic Model, tumour markers alone and their combination. The combination models were built through logistic regression, and was compared through the area under (AUC) the ROC curve. RESULTS: A total of 93 of 111 patients were included. The AUC of PNAIDS was 0.696, which increased to 0.847 when combined with CAC. The sensitivity (SE), specificity (SP), and positive (PPV) and negative (NPV) predictive values of the combined model were 61.0%, 94.1%, 94.7% and 58.2%, respectively. In addition, we evaluated the diagnostic value of CAC, which showed an AUC of 0.779, an SE of 76.3%, an SP of 64.7%, a PPV of 78.9%, and an NPV of 61.1%, higher than those of any single serum tumour marker and Mayo Clinic Model. The combination of PNAIDS and CAC exhibited significantly higher AUC values than the PNAIDS (P = 0.009) or the CAC (P = 0.047) indicator alone. However, including additional tumour markers did not significantly alter the performance of CAC and PNAIDS. CONCLUSIONS: CAC had a higher diagnostic value than traditional tumour markers in early-stage lung cancer and a supportive value for PNAIDS in the diagnosis of cancer based on lung nodules. The results of this study offer a new mode of screening for early-stage lung cancer using lung nodules.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Nódulo Pulmonar Solitario , Antígenos de Neoplasias , Inteligencia Artificial , Biomarcadores de Tumor , Detección Precoz del Cáncer/métodos , Humanos , Queratina-19 , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
11.
Nature ; 531(7595): 485-8, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26976448

RESUMEN

Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface premelting and two-dimensional melting.

12.
J Chem Phys ; 156(2): 021102, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35032980

RESUMEN

One of the most intriguing phenomena in active matter has been the gas-liquid-like motility-induced phase separation (MIPS) observed in repulsive active particles. However, experimentally, no particle can be a perfect sphere, and the asymmetric shape, mass distribution, or catalysis coating can induce an active torque on the particle, which makes it a chiral active particle. Here, using computer simulations and dynamic mean-field theory, we demonstrate that the large enough torque of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional MIPS. Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The nonvanishing current in non-equilibrium steady states microscopically originates from the motility "relieved" by automatic rotation, which breaks the detailed balance at the continuum level. This suggests that no equilibrium-like phase separation theory can be constructed for chiral active colloids even with tiny active torque, in which no visible collective motion exists. This mechanism also sheds light on the understanding of dynamic clusters observed in a variety of active matter systems.

13.
Proc Natl Acad Sci U S A ; 116(46): 22983-22989, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31666326

RESUMEN

Disordered hyperuniform structures are locally random while uniform like crystals at large length scales. Recently, an exotic hyperuniform fluid state was found in several nonequilibrium systems, while the underlying physics remains unknown. In this work, we propose a nonequilibrium (driven-dissipative) hard-sphere model and formulate a hydrodynamic theory based on Navier-Stokes equations to uncover the general mechanism of the fluidic hyperuniformity (HU). At a fixed density, this model system undergoes a smooth transition from an absorbing state to an active hyperuniform fluid and then, to the equilibrium fluid by changing the dissipation strength. We study the criticality of the absorbing-phase transition. We find that the origin of fluidic HU can be understood as the damping of a stochastic harmonic oscillator in q space, which indicates that the suppressed long-wavelength density fluctuation in the hyperuniform fluid can exhibit as either acoustic (resonance) mode or diffusive (overdamped) mode. Importantly, our theory reveals that the damping dissipation and active reciprocal interaction (driving) are the two ingredients for fluidic HU. Based on this principle, we further demonstrate how to realize the fluidic HU in an experimentally accessible active spinner system and discuss the possible realization in other systems.

14.
Phys Rev Lett ; 127(1): 018001, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270286

RESUMEN

Self-dual structures whose dual counterparts are themselves possess unique hidden symmetry, beyond the description of classical spatial symmetry groups. Here we propose a strategy based on a nematic monolayer of attractive half-cylindrical colloids to self-assemble these exotic structures. This system can be seen as a 2D system of semidisks. By using Monte Carlo simulations, we discover two isostatic self-dual crystals, i.e., an unreported crystal with pmg space-group symmetry and the twisted kagome crystal. For the pmg crystal approaching the critical point, we find the double degeneracy of the full phononic spectrum at the self-dual point and the merging of two tilted Weyl nodes into one critically tilted Dirac node. The latter is "accidentally" located on the high-symmetry line. The formation of this unconventional Dirac node is due to the emergence of the critical flatbands at the self-dual point, which are linear combinations of "finite-frequency" floppy modes. These modes can be understood as mechanically coupled self-dual rhombus chains vibrating in some unique uncoupled ways. Our work paves the way for designing and fabricating self-dual materials with exotic mechanical or phononic properties.

15.
Soft Matter ; 17(33): 7708-7713, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34351349

RESUMEN

We demonstrate the existence of unconventional rheological and memory properties in systems of soft-deformable particles whose energy depends on their shape, via numerical simulations. At large strains, these systems experience an unconventional shear weakening transition characterized by an increase in the mechanical energy and a drastic drop in shear stress, which stems from the emergence of short-ranged tetratic order. In these weakened states, the contact network evolves reversibly under strain reversal, keeping memory of its initial state, while the microscopic dynamics is irreversible.

16.
Nano Lett ; 20(10): 7367-7374, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857525

RESUMEN

Constructing three-dimensional (3D) metamaterials from functional nanoparticles endows them with emerging collective properties tailored by the packing geometries. Herein, we report 3D supercrystals self-assembled from upconversion nanorods (NaYF4:Yb,Er NRs), which exhibit both translational ordering of NRs and orientational ordering between constituent NRs in the superlattice (SL). The construction of 3D reciprocal space mappings (RSMs) based on synchrotron-based X-ray scattering measurements was developed to uncover the complex structure of such an assembly. That is, the two main orthogonal sets of hexagonal close-packing (hcp)-like SLs share the [110]SL axis, and NRs within the SL possess orientational relationships of [120]NR//[100]SL, [210]NR//[010]SL, and [001]NR//[001]SL. Notably, these supercrystals containing well-aligned NRs exhibit collectively anisotropic upconversion fluorescence in two perpendicular directions. This study not only demonstrates novel crystalline superstructures and functionality of NR-based 3D assemblies but also offers a unique tool for deciphering a wide range of complex nanoparticle supercrystals.


Asunto(s)
Nanopartículas , Nanotubos , Anisotropía , Fluorescencia
17.
Soft Matter ; 16(35): 8108-8113, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32896848

RESUMEN

Using computer simulation, we investigate the glass transition of a two-dimensional hard-hemidisk system. Upon increasing the packing fraction of the system, we find that the system vitrifies into a glass with local assembled discal "dimers", which are free to rotate in a collective way. The rotational mean square displacement does not exhibit the typical plateau (slowdown) like what occurs in the translational mean square displacement. This effect induces a pronounced violation of the rotational Stokes-Einstein relationship compared with the translational degree of freedom at the supercooled region. However, the obtained glass transition points in these two freedom degrees are found to be the same within the numerical accuracy, which is due to the strong positive spatial and dynamic correlation between translational and rotational slow-moving particles. Moreover, we find that the locally assembled dimers can serve as fast rotating gears facilitating the orientational relaxation in the system, and this suggests that the locally favored finite structures play an important role in the hierarchical glass transition of anisotropic colloids.

18.
Soft Matter ; 16(16): 3914-3920, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32270837

RESUMEN

In many biological processes, such as wound healing, cell tissues undergo an epithelial-to-mesenchymal transition, which is a transition from a more rigid to a more fluid state. Here, we investigate the solid/fluid transition of cell tissues within the framework of the self-propelled Voronoi model, which accounts for the deformability of the cells, for their many-body interactions, and for their polarized motility. The transition is controlled by two parameters, respectively accounting for the strength of the self-propelling force of the cells, and for the mechanical rigidity of the cells. We find the melting transition to occur via a continuous solid-hexatic transition followed by a continuous hexatic-liquid transition, as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. This finding indicates that the hexatic phase may have an unexpected biological relevance.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Modelos Biológicos
19.
J Chem Phys ; 152(23): 234502, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32571046

RESUMEN

We study the effect of heavy impurities on the dynamics of supercooled liquids. In a supercooled liquid, when we make a small fraction of particles heavier, they exhibit slower dynamics than the original particles and also make the overall system slower. If one looks at the overlap correlation function to quantify dynamics in the system, it has different behaviors for the heavy and the light particles. In particular, at the relaxation time of the overall system, the degree of relaxation achieved by the heavier particles is lesser, on average, than that achieved by the lighter particles. This difference in relaxation, however, goes down drastically as a crossover temperature, T0, is crossed. Below this crossover temperature, particles in the system have similar relaxation times irrespective of their masses. This crossover temperature depends on the fraction of the heavy particles and their masses. Next, we isolate the effect of mass heterogeneity on the dynamics of supercooled liquids and find that its effect increases monotonically with temperature. We also see that the development of dynamical heterogeneity with decreasing temperature is less dramatic for the system with impurities than for the pure system. Finally, the introduction of heavy impurities can be seen as a way of reducing the kinetic fragility of a supercooled liquid.

20.
J Chem Phys ; 153(17): 174501, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33167632

RESUMEN

Using Monte Carlo simulations, we systematically investigate the effect of particle size distribution on the phase behavior of polydisperse hard disks. Compared with the commonly used Gaussian-like polydisperse hard disks [P. Sampedro Ruiz, Q.-l. Lei, and R. Ni, Commun. Phys. 2, 70 (2019)], we find that the phase behavior of polydisperse hard-disk systems with lognormal and triangle distributions is significantly different. In polydisperse hard-disk systems of lognormal distributions, although the phase diagram appears similar to that of Gaussian-like polydisperse hard disks, the re-entrant melting of the hexatic or solid phase cannot be observed in sedimentation experiments. For polydisperse hard-disk systems of triangle distributions, the phase behavior is qualitatively different from the Gaussian-like and lognormal distributions, and we cannot reach any system of true polydispersity larger than 0.06, which is due to the special shape of the triangle distribution. Our results suggest that the exact particle size distribution is of primary importance in determining the phase behavior of polydisperse hard disks, and we do not have a universal phase diagram for different polydisperse hard-disk systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA